# Generation of Isosurfaces skript (Marching Cubes)

I just wrote this some time ago and thought it might be useful to some people as there seems to be no working script for this task right now (Or at least I do not know one). This script renders every possible isosurface to a blender mesh using the marching cubes algorithm.

link to script: http://pastebin.com/73K4JQ6P

Notes:

• The script is a little slow, though there is some potential for improvement using code optimization. In its current form the code is at least easy to understand. Other ways would be: using numpy or cython to speed up the algorithm.
• I did not have the time to write a plugin interface for blender, sorry. But it would be really cool if someone did it for me (I might take some time for me to do this).
• It would be really awesome if poeple could use this thread to post their own scripts for the generation of isosurfaces (I am working on a script which uses delaunay triangulation but its not ready yet)
• This code should work with blender versions > 2.59
• Another possibility would be to make use of the internal blender algorithms for metaballs. I would really like to have those algorithms exposed to python as they seem to use marching cubes, too and are a lot faster as they are written in C.

Have fun with it!

thanks a lot for your script,
But I tried it on a sphere (deleted faces and edges in editmode, then run your sript)
It runs since 30 min and still no answer from blender (software not responding), did I something wrong ? i use latest svn on windows

does your parametric function (âdouble sphereâ in my script) look something like this (a spherical parametric density function)? the radius of the sphere (isosurface) could then easily be defined by the threshold parameter.

``````def doublesphere(pos):
x,y,z=pos[0],pos[1],pos[2]
return x*x+y*y+z*z
``````

The problem of blender âbeeing locked downâ on your computer could be that the resolution of your chosen grid is just too high. A 100x100x100 grid gave me calculation times of about ~5min (on a 2x 1.6Ghz dualcore). Keep in mind, that a resolution of 100x100x100 means 1000000 boxes in your grid. 200x200x200 would already be 8000000 boxes which is 5min*8=40min already. Thus: keep the resolution as low as possible.

HI,
It worked, just a little feedback here and bugs i found : after an hour, i had 2 sphere (instead of 1) with holes. Iâm on a friend computer wich is pretty slow. Iâll try to adjust the resolution. Anyway, after that i tried on a subdivided plane wich i deformed a bit like a mountain terrain, then removed faces and edges, runed your script again, but it computed again the same 2 spheres ( despite that I had deleted the sphere and the plane was in editmode with all vertecies from that plane selected).

HmmâŚ maybe i should explain a little bit more how my script works: you do not have to select any objects before executing the script. You just define a new parametric function within the script and a new object will be created.

I guess I donât get itâŚdoes your script just make that one shape?

Ah finally someone made this for latest blender version :D!There were some really old scripts i never bothered with them.Instead I just used Meshlabâs âImplicit surface filterâ.

Some equations to play with can be found here :yes:
http://www.singsurf.org/singsurf/SingSurf.html

Thanks for making this !

@Atom:
You have to modify doublesphere(pos) function and add you own equation to it like this

``````
def doublesphere(pos):
x,y,z=pos[0],pos[1],pos[2]
return x*x+y*y+z*z

``````

or

``````
def doublesphere(pos):
x,y,z=pos[0],pos[1],pos[2]
return sin(x*x)+cos(y*y)+z*z

``````

nope, you can do every shape you wantâŚ I made a few more comments in the code which part defines the shape here is the new link: http://pastebin.com/73K4JQ6P

if you want to change the shape change the function âscalarfield(pos)â and the threshhold value to something you want. For example to get a sphere: change the âscalarfieldâ function to:

``````
def scalarfield(pos):
x,y,z=pos[0],pos[1],pos[2]
return x*x+y*y+z*z
``````

the threshold value below will then define the radius of the sphere.

maybe I should really program an operator interface for blender ^^.

First tryout render

Great script Yeus!

ok sorry, i missunderstood what the plug-in does
thanks for the explanation

Sorry to popup this old thread but Iâm really interested to take this script and optimize/cythonize it for better performance.
I get a 60times faster and more by converting my Molecular script in cython so I hope to get same result here. Probably better performance if I can multithread it too. I currently get 120sec for 100x100x100res. 960sec for 200x200x200. If I can drop it to 2sec and 16sec itâs would be nice.

I know the author donât show any activity on the forum for a while. I take a look on this soon has possible.

EDIT: My goal is to achieve a mesher for Molecular or any particles sims ( like particles fluids ). Donât know if itâs a good idea for this application or not âŚ

EDIT2: Already get good optimisation in python just by put tritable and edgetable global and outside the function. 6times faster. 20sec for 100x100x100 and 160sec for 200x200x200 resolution. Plus a cython implement , this promisingâŚ I hope.

EDIT3: Lastest good news on this thread. After that I wait to get somethings more usable with particles to open my own thread on the addon. So , after âcythonizingâ the entire script as-is , itâs now 160 - 200 times faster that the original python one I wrote in the edit2. Good news so far and I donât stop to try to optimize it before starting to work with particles.

Hi Pyroevil!

great work you did there, could you publish the cython-version of the script here?

geertings, tom

I decided to see how much I could optimize it without learning cython (because i think Pyroevil probably has that avenue covered properly). I also made some fixes necessitated by blenderâs API drift. The result is at https://github.com/mutantbob/blender-marching-cubes . I was able to reduce the run time of the script (on my laptop) from 46 seconds to 3.4 seconds. I was mildly surprised by how many of my optimization ideas made no performance improvement (and were therefore discarded).

Iâd like to improve it to support the Gaussian Cube format, but Iâll have to find some sample data sets first.

1 Like

Does this work in 2.8x ?

Can someone help port?

ok - trying to get this to install and there is no api / usage documents etc.

any help?

I am trying to get the thing to install in 0.2.79.6 and 0.3.0 and I canât get either to work.

@BluePrintRandom

No clue what itâs for ,but works here.

``````
import time
import math
from math import sqrt,sin,cos,tan
import mathutils
import bpy
from itertools import chain
import bmesh

vec=mathutils.Vector
ABS=abs

def main():
print("start calculation of isosurface")

#change this part to create your own surfaces
#####################################################
# define a 3D scalarfield (the function which defines the shape of the isosurface)
def scalarfield(pos):
x,y,z=pos[0],pos[1],pos[2]
m=2 #distance between spheres
a= 1.0/(1+(x-m)*(x-m)+y*y+z*z)
b= 1.0/(1+(x+m)*(x+m)+y*y+z*z)
c= 0.5*(sin(6*x)+sin(6*z))
csq=c**10
return (a+b)-csq

p0=-5,-5,-5             #first point defining the gridbox of the MC-algorithm
p1=5,5,5                #second point defining the gridbox of the MC-algorithm
res=60
resolution=(res,res,res)   #resolution in x,y,z direction of the grid (10x10x10 means 1000 cubes)
isolevel=0.3         #threshold value used for the surface within the scalarfield

#end of isosurface definition
###############################################

start = time.time()
isosurface(p0,p1,resolution,isolevel,scalarfield)
elapsed = time.time()-start
print("end test %r"%elapsed)

#
#
#

edgetable=(0x0  , 0x109, 0x203, 0x30a, 0x406, 0x50f, 0x605, 0x70c,
0x80c, 0x905, 0xa0f, 0xb06, 0xc0a, 0xd03, 0xe09, 0xf00,
0x190, 0x99 , 0x393, 0x29a, 0x596, 0x49f, 0x795, 0x69c,
0x99c, 0x895, 0xb9f, 0xa96, 0xd9a, 0xc93, 0xf99, 0xe90,
0x230, 0x339, 0x33 , 0x13a, 0x636, 0x73f, 0x435, 0x53c,
0xa3c, 0xb35, 0x83f, 0x936, 0xe3a, 0xf33, 0xc39, 0xd30,
0x3a0, 0x2a9, 0x1a3, 0xaa , 0x7a6, 0x6af, 0x5a5, 0x4ac,
0xbac, 0xaa5, 0x9af, 0x8a6, 0xfaa, 0xea3, 0xda9, 0xca0,
0x460, 0x569, 0x663, 0x76a, 0x66 , 0x16f, 0x265, 0x36c,
0xc6c, 0xd65, 0xe6f, 0xf66, 0x86a, 0x963, 0xa69, 0xb60,
0x5f0, 0x4f9, 0x7f3, 0x6fa, 0x1f6, 0xff , 0x3f5, 0x2fc,
0xdfc, 0xcf5, 0xfff, 0xef6, 0x9fa, 0x8f3, 0xbf9, 0xaf0,
0x650, 0x759, 0x453, 0x55a, 0x256, 0x35f, 0x55 , 0x15c,
0xe5c, 0xf55, 0xc5f, 0xd56, 0xa5a, 0xb53, 0x859, 0x950,
0x7c0, 0x6c9, 0x5c3, 0x4ca, 0x3c6, 0x2cf, 0x1c5, 0xcc ,
0xfcc, 0xec5, 0xdcf, 0xcc6, 0xbca, 0xac3, 0x9c9, 0x8c0,
0x8c0, 0x9c9, 0xac3, 0xbca, 0xcc6, 0xdcf, 0xec5, 0xfcc,
0xcc , 0x1c5, 0x2cf, 0x3c6, 0x4ca, 0x5c3, 0x6c9, 0x7c0,
0x950, 0x859, 0xb53, 0xa5a, 0xd56, 0xc5f, 0xf55, 0xe5c,
0x15c, 0x55 , 0x35f, 0x256, 0x55a, 0x453, 0x759, 0x650,
0xaf0, 0xbf9, 0x8f3, 0x9fa, 0xef6, 0xfff, 0xcf5, 0xdfc,
0x2fc, 0x3f5, 0xff , 0x1f6, 0x6fa, 0x7f3, 0x4f9, 0x5f0,
0xb60, 0xa69, 0x963, 0x86a, 0xf66, 0xe6f, 0xd65, 0xc6c,
0x36c, 0x265, 0x16f, 0x66 , 0x76a, 0x663, 0x569, 0x460,
0xca0, 0xda9, 0xea3, 0xfaa, 0x8a6, 0x9af, 0xaa5, 0xbac,
0x4ac, 0x5a5, 0x6af, 0x7a6, 0xaa , 0x1a3, 0x2a9, 0x3a0,
0xd30, 0xc39, 0xf33, 0xe3a, 0x936, 0x83f, 0xb35, 0xa3c,
0x53c, 0x435, 0x73f, 0x636, 0x13a, 0x33 , 0x339, 0x230,
0xe90, 0xf99, 0xc93, 0xd9a, 0xa96, 0xb9f, 0x895, 0x99c,
0x69c, 0x795, 0x49f, 0x596, 0x29a, 0x393, 0x99 , 0x190,
0xf00, 0xe09, 0xd03, 0xc0a, 0xb06, 0xa0f, 0x905, 0x80c,
0x70c, 0x605, 0x50f, 0x406, 0x30a, 0x203, 0x109, 0x0)
tritable = [[-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[0, 1, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[1, 8, 3, 9, 8, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[1, 2, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[0, 8, 3, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[9, 2, 10, 0, 2, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[2, 8, 3, 2, 10, 8, 10, 9, 8, -1, -1, -1, -1, -1, -1, -1],
[3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[0, 11, 2, 8, 11, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[1, 9, 0, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[1, 11, 2, 1, 9, 11, 9, 8, 11, -1, -1, -1, -1, -1, -1, -1],
[3, 10, 1, 11, 10, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[0, 10, 1, 0, 8, 10, 8, 11, 10, -1, -1, -1, -1, -1, -1, -1],
[3, 9, 0, 3, 11, 9, 11, 10, 9, -1, -1, -1, -1, -1, -1, -1],
[9, 8, 10, 10, 8, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[4, 3, 0, 7, 3, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[0, 1, 9, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[4, 1, 9, 4, 7, 1, 7, 3, 1, -1, -1, -1, -1, -1, -1, -1],
[1, 2, 10, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[3, 4, 7, 3, 0, 4, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1],
[9, 2, 10, 9, 0, 2, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1],
[2, 10, 9, 2, 9, 7, 2, 7, 3, 7, 9, 4, -1, -1, -1, -1],
[8, 4, 7, 3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[11, 4, 7, 11, 2, 4, 2, 0, 4, -1, -1, -1, -1, -1, -1, -1],
[9, 0, 1, 8, 4, 7, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1],
[4, 7, 11, 9, 4, 11, 9, 11, 2, 9, 2, 1, -1, -1, -1, -1],
[3, 10, 1, 3, 11, 10, 7, 8, 4, -1, -1, -1, -1, -1, -1, -1],
[1, 11, 10, 1, 4, 11, 1, 0, 4, 7, 11, 4, -1, -1, -1, -1],
[4, 7, 8, 9, 0, 11, 9, 11, 10, 11, 0, 3, -1, -1, -1, -1],
[4, 7, 11, 4, 11, 9, 9, 11, 10, -1, -1, -1, -1, -1, -1, -1],
[9, 5, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[9, 5, 4, 0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[0, 5, 4, 1, 5, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[8, 5, 4, 8, 3, 5, 3, 1, 5, -1, -1, -1, -1, -1, -1, -1],
[1, 2, 10, 9, 5, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[3, 0, 8, 1, 2, 10, 4, 9, 5, -1, -1, -1, -1, -1, -1, -1],
[5, 2, 10, 5, 4, 2, 4, 0, 2, -1, -1, -1, -1, -1, -1, -1],
[2, 10, 5, 3, 2, 5, 3, 5, 4, 3, 4, 8, -1, -1, -1, -1],
[9, 5, 4, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[0, 11, 2, 0, 8, 11, 4, 9, 5, -1, -1, -1, -1, -1, -1, -1],
[0, 5, 4, 0, 1, 5, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1],
[2, 1, 5, 2, 5, 8, 2, 8, 11, 4, 8, 5, -1, -1, -1, -1],
[10, 3, 11, 10, 1, 3, 9, 5, 4, -1, -1, -1, -1, -1, -1, -1],
[4, 9, 5, 0, 8, 1, 8, 10, 1, 8, 11, 10, -1, -1, -1, -1],
[5, 4, 0, 5, 0, 11, 5, 11, 10, 11, 0, 3, -1, -1, -1, -1],
[5, 4, 8, 5, 8, 10, 10, 8, 11, -1, -1, -1, -1, -1, -1, -1],
[9, 7, 8, 5, 7, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[9, 3, 0, 9, 5, 3, 5, 7, 3, -1, -1, -1, -1, -1, -1, -1],
[0, 7, 8, 0, 1, 7, 1, 5, 7, -1, -1, -1, -1, -1, -1, -1],
[1, 5, 3, 3, 5, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[9, 7, 8, 9, 5, 7, 10, 1, 2, -1, -1, -1, -1, -1, -1, -1],
[10, 1, 2, 9, 5, 0, 5, 3, 0, 5, 7, 3, -1, -1, -1, -1],
[8, 0, 2, 8, 2, 5, 8, 5, 7, 10, 5, 2, -1, -1, -1, -1],
[2, 10, 5, 2, 5, 3, 3, 5, 7, -1, -1, -1, -1, -1, -1, -1],
[7, 9, 5, 7, 8, 9, 3, 11, 2, -1, -1, -1, -1, -1, -1, -1],
[9, 5, 7, 9, 7, 2, 9, 2, 0, 2, 7, 11, -1, -1, -1, -1],
[2, 3, 11, 0, 1, 8, 1, 7, 8, 1, 5, 7, -1, -1, -1, -1],
[11, 2, 1, 11, 1, 7, 7, 1, 5, -1, -1, -1, -1, -1, -1, -1],
[9, 5, 8, 8, 5, 7, 10, 1, 3, 10, 3, 11, -1, -1, -1, -1],
[5, 7, 0, 5, 0, 9, 7, 11, 0, 1, 0, 10, 11, 10, 0, -1],
[11, 10, 0, 11, 0, 3, 10, 5, 0, 8, 0, 7, 5, 7, 0, -1],
[11, 10, 5, 7, 11, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[10, 6, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[0, 8, 3, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[9, 0, 1, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[1, 8, 3, 1, 9, 8, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1],
[1, 6, 5, 2, 6, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[1, 6, 5, 1, 2, 6, 3, 0, 8, -1, -1, -1, -1, -1, -1, -1],
[9, 6, 5, 9, 0, 6, 0, 2, 6, -1, -1, -1, -1, -1, -1, -1],
[5, 9, 8, 5, 8, 2, 5, 2, 6, 3, 2, 8, -1, -1, -1, -1],
[2, 3, 11, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[11, 0, 8, 11, 2, 0, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1],
[0, 1, 9, 2, 3, 11, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1],
[5, 10, 6, 1, 9, 2, 9, 11, 2, 9, 8, 11, -1, -1, -1, -1],
[6, 3, 11, 6, 5, 3, 5, 1, 3, -1, -1, -1, -1, -1, -1, -1],
[0, 8, 11, 0, 11, 5, 0, 5, 1, 5, 11, 6, -1, -1, -1, -1],
[3, 11, 6, 0, 3, 6, 0, 6, 5, 0, 5, 9, -1, -1, -1, -1],
[6, 5, 9, 6, 9, 11, 11, 9, 8, -1, -1, -1, -1, -1, -1, -1],
[5, 10, 6, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[4, 3, 0, 4, 7, 3, 6, 5, 10, -1, -1, -1, -1, -1, -1, -1],
[1, 9, 0, 5, 10, 6, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1],
[10, 6, 5, 1, 9, 7, 1, 7, 3, 7, 9, 4, -1, -1, -1, -1],
[6, 1, 2, 6, 5, 1, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1],
[1, 2, 5, 5, 2, 6, 3, 0, 4, 3, 4, 7, -1, -1, -1, -1],
[8, 4, 7, 9, 0, 5, 0, 6, 5, 0, 2, 6, -1, -1, -1, -1],
[7, 3, 9, 7, 9, 4, 3, 2, 9, 5, 9, 6, 2, 6, 9, -1],
[3, 11, 2, 7, 8, 4, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1],
[5, 10, 6, 4, 7, 2, 4, 2, 0, 2, 7, 11, -1, -1, -1, -1],
[0, 1, 9, 4, 7, 8, 2, 3, 11, 5, 10, 6, -1, -1, -1, -1],
[9, 2, 1, 9, 11, 2, 9, 4, 11, 7, 11, 4, 5, 10, 6, -1],
[8, 4, 7, 3, 11, 5, 3, 5, 1, 5, 11, 6, -1, -1, -1, -1],
[5, 1, 11, 5, 11, 6, 1, 0, 11, 7, 11, 4, 0, 4, 11, -1],
[0, 5, 9, 0, 6, 5, 0, 3, 6, 11, 6, 3, 8, 4, 7, -1],
[6, 5, 9, 6, 9, 11, 4, 7, 9, 7, 11, 9, -1, -1, -1, -1],
[10, 4, 9, 6, 4, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[4, 10, 6, 4, 9, 10, 0, 8, 3, -1, -1, -1, -1, -1, -1, -1],
[10, 0, 1, 10, 6, 0, 6, 4, 0, -1, -1, -1, -1, -1, -1, -1],
[8, 3, 1, 8, 1, 6, 8, 6, 4, 6, 1, 10, -1, -1, -1, -1],
[1, 4, 9, 1, 2, 4, 2, 6, 4, -1, -1, -1, -1, -1, -1, -1],
[3, 0, 8, 1, 2, 9, 2, 4, 9, 2, 6, 4, -1, -1, -1, -1],
[0, 2, 4, 4, 2, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[8, 3, 2, 8, 2, 4, 4, 2, 6, -1, -1, -1, -1, -1, -1, -1],
[10, 4, 9, 10, 6, 4, 11, 2, 3, -1, -1, -1, -1, -1, -1, -1],
[0, 8, 2, 2, 8, 11, 4, 9, 10, 4, 10, 6, -1, -1, -1, -1],
[3, 11, 2, 0, 1, 6, 0, 6, 4, 6, 1, 10, -1, -1, -1, -1],
[6, 4, 1, 6, 1, 10, 4, 8, 1, 2, 1, 11, 8, 11, 1, -1],
[9, 6, 4, 9, 3, 6, 9, 1, 3, 11, 6, 3, -1, -1, -1, -1],
[8, 11, 1, 8, 1, 0, 11, 6, 1, 9, 1, 4, 6, 4, 1, -1],
[3, 11, 6, 3, 6, 0, 0, 6, 4, -1, -1, -1, -1, -1, -1, -1],
[6, 4, 8, 11, 6, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[7, 10, 6, 7, 8, 10, 8, 9, 10, -1, -1, -1, -1, -1, -1, -1],
[0, 7, 3, 0, 10, 7, 0, 9, 10, 6, 7, 10, -1, -1, -1, -1],
[10, 6, 7, 1, 10, 7, 1, 7, 8, 1, 8, 0, -1, -1, -1, -1],
[10, 6, 7, 10, 7, 1, 1, 7, 3, -1, -1, -1, -1, -1, -1, -1],
[1, 2, 6, 1, 6, 8, 1, 8, 9, 8, 6, 7, -1, -1, -1, -1],
[2, 6, 9, 2, 9, 1, 6, 7, 9, 0, 9, 3, 7, 3, 9, -1],
[7, 8, 0, 7, 0, 6, 6, 0, 2, -1, -1, -1, -1, -1, -1, -1],
[7, 3, 2, 6, 7, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[2, 3, 11, 10, 6, 8, 10, 8, 9, 8, 6, 7, -1, -1, -1, -1],
[2, 0, 7, 2, 7, 11, 0, 9, 7, 6, 7, 10, 9, 10, 7, -1],
[1, 8, 0, 1, 7, 8, 1, 10, 7, 6, 7, 10, 2, 3, 11, -1],
[11, 2, 1, 11, 1, 7, 10, 6, 1, 6, 7, 1, -1, -1, -1, -1],
[8, 9, 6, 8, 6, 7, 9, 1, 6, 11, 6, 3, 1, 3, 6, -1],
[0, 9, 1, 11, 6, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[7, 8, 0, 7, 0, 6, 3, 11, 0, 11, 6, 0, -1, -1, -1, -1],
[7, 11, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[7, 6, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[3, 0, 8, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[0, 1, 9, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[8, 1, 9, 8, 3, 1, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1],
[10, 1, 2, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[1, 2, 10, 3, 0, 8, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1],
[2, 9, 0, 2, 10, 9, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1],
[6, 11, 7, 2, 10, 3, 10, 8, 3, 10, 9, 8, -1, -1, -1, -1],
[7, 2, 3, 6, 2, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[7, 0, 8, 7, 6, 0, 6, 2, 0, -1, -1, -1, -1, -1, -1, -1],
[2, 7, 6, 2, 3, 7, 0, 1, 9, -1, -1, -1, -1, -1, -1, -1],
[1, 6, 2, 1, 8, 6, 1, 9, 8, 8, 7, 6, -1, -1, -1, -1],
[10, 7, 6, 10, 1, 7, 1, 3, 7, -1, -1, -1, -1, -1, -1, -1],
[10, 7, 6, 1, 7, 10, 1, 8, 7, 1, 0, 8, -1, -1, -1, -1],
[0, 3, 7, 0, 7, 10, 0, 10, 9, 6, 10, 7, -1, -1, -1, -1],
[7, 6, 10, 7, 10, 8, 8, 10, 9, -1, -1, -1, -1, -1, -1, -1],
[6, 8, 4, 11, 8, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[3, 6, 11, 3, 0, 6, 0, 4, 6, -1, -1, -1, -1, -1, -1, -1],
[8, 6, 11, 8, 4, 6, 9, 0, 1, -1, -1, -1, -1, -1, -1, -1],
[9, 4, 6, 9, 6, 3, 9, 3, 1, 11, 3, 6, -1, -1, -1, -1],
[6, 8, 4, 6, 11, 8, 2, 10, 1, -1, -1, -1, -1, -1, -1, -1],
[1, 2, 10, 3, 0, 11, 0, 6, 11, 0, 4, 6, -1, -1, -1, -1],
[4, 11, 8, 4, 6, 11, 0, 2, 9, 2, 10, 9, -1, -1, -1, -1],
[10, 9, 3, 10, 3, 2, 9, 4, 3, 11, 3, 6, 4, 6, 3, -1],
[8, 2, 3, 8, 4, 2, 4, 6, 2, -1, -1, -1, -1, -1, -1, -1],
[0, 4, 2, 4, 6, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[1, 9, 0, 2, 3, 4, 2, 4, 6, 4, 3, 8, -1, -1, -1, -1],
[1, 9, 4, 1, 4, 2, 2, 4, 6, -1, -1, -1, -1, -1, -1, -1],
[8, 1, 3, 8, 6, 1, 8, 4, 6, 6, 10, 1, -1, -1, -1, -1],
[10, 1, 0, 10, 0, 6, 6, 0, 4, -1, -1, -1, -1, -1, -1, -1],
[4, 6, 3, 4, 3, 8, 6, 10, 3, 0, 3, 9, 10, 9, 3, -1],
[10, 9, 4, 6, 10, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[4, 9, 5, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[0, 8, 3, 4, 9, 5, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1],
[5, 0, 1, 5, 4, 0, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1],
[11, 7, 6, 8, 3, 4, 3, 5, 4, 3, 1, 5, -1, -1, -1, -1],
[9, 5, 4, 10, 1, 2, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1],
[6, 11, 7, 1, 2, 10, 0, 8, 3, 4, 9, 5, -1, -1, -1, -1],
[7, 6, 11, 5, 4, 10, 4, 2, 10, 4, 0, 2, -1, -1, -1, -1],
[3, 4, 8, 3, 5, 4, 3, 2, 5, 10, 5, 2, 11, 7, 6, -1],
[7, 2, 3, 7, 6, 2, 5, 4, 9, -1, -1, -1, -1, -1, -1, -1],
[9, 5, 4, 0, 8, 6, 0, 6, 2, 6, 8, 7, -1, -1, -1, -1],
[3, 6, 2, 3, 7, 6, 1, 5, 0, 5, 4, 0, -1, -1, -1, -1],
[6, 2, 8, 6, 8, 7, 2, 1, 8, 4, 8, 5, 1, 5, 8, -1],
[9, 5, 4, 10, 1, 6, 1, 7, 6, 1, 3, 7, -1, -1, -1, -1],
[1, 6, 10, 1, 7, 6, 1, 0, 7, 8, 7, 0, 9, 5, 4, -1],
[4, 0, 10, 4, 10, 5, 0, 3, 10, 6, 10, 7, 3, 7, 10, -1],
[7, 6, 10, 7, 10, 8, 5, 4, 10, 4, 8, 10, -1, -1, -1, -1],
[6, 9, 5, 6, 11, 9, 11, 8, 9, -1, -1, -1, -1, -1, -1, -1],
[3, 6, 11, 0, 6, 3, 0, 5, 6, 0, 9, 5, -1, -1, -1, -1],
[0, 11, 8, 0, 5, 11, 0, 1, 5, 5, 6, 11, -1, -1, -1, -1],
[6, 11, 3, 6, 3, 5, 5, 3, 1, -1, -1, -1, -1, -1, -1, -1],
[1, 2, 10, 9, 5, 11, 9, 11, 8, 11, 5, 6, -1, -1, -1, -1],
[0, 11, 3, 0, 6, 11, 0, 9, 6, 5, 6, 9, 1, 2, 10, -1],
[11, 8, 5, 11, 5, 6, 8, 0, 5, 10, 5, 2, 0, 2, 5, -1],
[6, 11, 3, 6, 3, 5, 2, 10, 3, 10, 5, 3, -1, -1, -1, -1],
[5, 8, 9, 5, 2, 8, 5, 6, 2, 3, 8, 2, -1, -1, -1, -1],
[9, 5, 6, 9, 6, 0, 0, 6, 2, -1, -1, -1, -1, -1, -1, -1],
[1, 5, 8, 1, 8, 0, 5, 6, 8, 3, 8, 2, 6, 2, 8, -1],
[1, 5, 6, 2, 1, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[1, 3, 6, 1, 6, 10, 3, 8, 6, 5, 6, 9, 8, 9, 6, -1],
[10, 1, 0, 10, 0, 6, 9, 5, 0, 5, 6, 0, -1, -1, -1, -1],
[0, 3, 8, 5, 6, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[10, 5, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[11, 5, 10, 7, 5, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[11, 5, 10, 11, 7, 5, 8, 3, 0, -1, -1, -1, -1, -1, -1, -1],
[5, 11, 7, 5, 10, 11, 1, 9, 0, -1, -1, -1, -1, -1, -1, -1],
[10, 7, 5, 10, 11, 7, 9, 8, 1, 8, 3, 1, -1, -1, -1, -1],
[11, 1, 2, 11, 7, 1, 7, 5, 1, -1, -1, -1, -1, -1, -1, -1],
[0, 8, 3, 1, 2, 7, 1, 7, 5, 7, 2, 11, -1, -1, -1, -1],
[9, 7, 5, 9, 2, 7, 9, 0, 2, 2, 11, 7, -1, -1, -1, -1],
[7, 5, 2, 7, 2, 11, 5, 9, 2, 3, 2, 8, 9, 8, 2, -1],
[2, 5, 10, 2, 3, 5, 3, 7, 5, -1, -1, -1, -1, -1, -1, -1],
[8, 2, 0, 8, 5, 2, 8, 7, 5, 10, 2, 5, -1, -1, -1, -1],
[9, 0, 1, 5, 10, 3, 5, 3, 7, 3, 10, 2, -1, -1, -1, -1],
[9, 8, 2, 9, 2, 1, 8, 7, 2, 10, 2, 5, 7, 5, 2, -1],
[1, 3, 5, 3, 7, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[0, 8, 7, 0, 7, 1, 1, 7, 5, -1, -1, -1, -1, -1, -1, -1],
[9, 0, 3, 9, 3, 5, 5, 3, 7, -1, -1, -1, -1, -1, -1, -1],
[9, 8, 7, 5, 9, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[5, 8, 4, 5, 10, 8, 10, 11, 8, -1, -1, -1, -1, -1, -1, -1],
[5, 0, 4, 5, 11, 0, 5, 10, 11, 11, 3, 0, -1, -1, -1, -1],
[0, 1, 9, 8, 4, 10, 8, 10, 11, 10, 4, 5, -1, -1, -1, -1],
[10, 11, 4, 10, 4, 5, 11, 3, 4, 9, 4, 1, 3, 1, 4, -1],
[2, 5, 1, 2, 8, 5, 2, 11, 8, 4, 5, 8, -1, -1, -1, -1],
[0, 4, 11, 0, 11, 3, 4, 5, 11, 2, 11, 1, 5, 1, 11, -1],
[0, 2, 5, 0, 5, 9, 2, 11, 5, 4, 5, 8, 11, 8, 5, -1],
[9, 4, 5, 2, 11, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[2, 5, 10, 3, 5, 2, 3, 4, 5, 3, 8, 4, -1, -1, -1, -1],
[5, 10, 2, 5, 2, 4, 4, 2, 0, -1, -1, -1, -1, -1, -1, -1],
[3, 10, 2, 3, 5, 10, 3, 8, 5, 4, 5, 8, 0, 1, 9, -1],
[5, 10, 2, 5, 2, 4, 1, 9, 2, 9, 4, 2, -1, -1, -1, -1],
[8, 4, 5, 8, 5, 3, 3, 5, 1, -1, -1, -1, -1, -1, -1, -1],
[0, 4, 5, 1, 0, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[8, 4, 5, 8, 5, 3, 9, 0, 5, 0, 3, 5, -1, -1, -1, -1],
[9, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[4, 11, 7, 4, 9, 11, 9, 10, 11, -1, -1, -1, -1, -1, -1, -1],
[0, 8, 3, 4, 9, 7, 9, 11, 7, 9, 10, 11, -1, -1, -1, -1],
[1, 10, 11, 1, 11, 4, 1, 4, 0, 7, 4, 11, -1, -1, -1, -1],
[3, 1, 4, 3, 4, 8, 1, 10, 4, 7, 4, 11, 10, 11, 4, -1],
[4, 11, 7, 9, 11, 4, 9, 2, 11, 9, 1, 2, -1, -1, -1, -1],
[9, 7, 4, 9, 11, 7, 9, 1, 11, 2, 11, 1, 0, 8, 3, -1],
[11, 7, 4, 11, 4, 2, 2, 4, 0, -1, -1, -1, -1, -1, -1, -1],
[11, 7, 4, 11, 4, 2, 8, 3, 4, 3, 2, 4, -1, -1, -1, -1],
[2, 9, 10, 2, 7, 9, 2, 3, 7, 7, 4, 9, -1, -1, -1, -1],
[9, 10, 7, 9, 7, 4, 10, 2, 7, 8, 7, 0, 2, 0, 7, -1],
[3, 7, 10, 3, 10, 2, 7, 4, 10, 1, 10, 0, 4, 0, 10, -1],
[1, 10, 2, 8, 7, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[4, 9, 1, 4, 1, 7, 7, 1, 3, -1, -1, -1, -1, -1, -1, -1],
[4, 9, 1, 4, 1, 7, 0, 8, 1, 8, 7, 1, -1, -1, -1, -1],
[4, 0, 3, 7, 4, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[4, 8, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[9, 10, 8, 10, 11, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[3, 0, 9, 3, 9, 11, 11, 9, 10, -1, -1, -1, -1, -1, -1, -1],
[0, 1, 10, 0, 10, 8, 8, 10, 11, -1, -1, -1, -1, -1, -1, -1],
[3, 1, 10, 11, 3, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[1, 2, 11, 1, 11, 9, 9, 11, 8, -1, -1, -1, -1, -1, -1, -1],
[3, 0, 9, 3, 9, 11, 1, 2, 9, 2, 11, 9, -1, -1, -1, -1],
[0, 2, 11, 8, 0, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[3, 2, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[2, 3, 8, 2, 8, 10, 10, 8, 9, -1, -1, -1, -1, -1, -1, -1],
[9, 10, 2, 0, 9, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[2, 3, 8, 2, 8, 10, 0, 1, 8, 1, 10, 8, -1, -1, -1, -1],
[1, 10, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[1, 3, 8, 9, 1, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[0, 9, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[0, 3, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]
]

def polygonise(cornervalues, isolevel, x1, y1, z1, x2, y2, z2):

#   Determine the index into the edge table which
#   tells us which vertices are inside of the surface
cubeindex = 0
if cornervalues[0] < isolevel: cubeindex = cubeindex | 1
if cornervalues[1] < isolevel: cubeindex = cubeindex | 2
if cornervalues[2] < isolevel: cubeindex = cubeindex | 4
if cornervalues[3] < isolevel: cubeindex = cubeindex | 8
if cornervalues[4] < isolevel: cubeindex = cubeindex | 16
if cornervalues[5] < isolevel: cubeindex = cubeindex | 32
if cornervalues[6] < isolevel: cubeindex = cubeindex | 64
if cornervalues[7] < isolevel: cubeindex = cubeindex | 128

# Cube is entirely in/out of the surface
if edgetable[cubeindex] == 0: return []

vertlist=[[]]*12
# Find the vertices where the surface intersects the cube
if (edgetable[cubeindex] & 1):    vertlist[0]  = vertexinterp(isolevel,[x1,y1,z1],[x1,y2,z1],cornervalues[0],cornervalues[1])
if (edgetable[cubeindex] & 2):    vertlist[1]  = vertexinterp(isolevel,[x1,y2,z1],[x2,y2,z1],cornervalues[1],cornervalues[2])
if (edgetable[cubeindex] & 4):    vertlist[2]  = vertexinterp(isolevel,[x2,y2,z1],[x2,y1,z1],cornervalues[2],cornervalues[3])
if (edgetable[cubeindex] & 8):    vertlist[3]  = vertexinterp(isolevel,[x2,y1,z1],[x1,y1,z1],cornervalues[3],cornervalues[0])
if (edgetable[cubeindex] & 16):   vertlist[4]  = vertexinterp(isolevel,[x1,y1,z2],[x1,y2,z2],cornervalues[4],cornervalues[5])
if (edgetable[cubeindex] & 32):   vertlist[5]  = vertexinterp(isolevel,[x1,y2,z2],[x2,y2,z2],cornervalues[5],cornervalues[6])
if (edgetable[cubeindex] & 64):   vertlist[6]  = vertexinterp(isolevel,[x2,y2,z2],[x2,y1,z2],cornervalues[6],cornervalues[7])
if (edgetable[cubeindex] & 128):  vertlist[7]  = vertexinterp(isolevel,[x2,y1,z2],[x1,y1,z2],cornervalues[7],cornervalues[4])
if (edgetable[cubeindex] & 256):  vertlist[8]  = vertexinterp(isolevel,[x1,y1,z1],[x1,y1,z2],cornervalues[0],cornervalues[4])
if (edgetable[cubeindex] & 512):  vertlist[9]  = vertexinterp(isolevel,[x1,y2,z1],[x1,y2,z2],cornervalues[1],cornervalues[5])
if (edgetable[cubeindex] & 1024): vertlist[10] = vertexinterp(isolevel,[x2,y2,z1],[x2,y2,z2],cornervalues[2],cornervalues[6])
if (edgetable[cubeindex] & 2048): vertlist[11] = vertexinterp(isolevel,[x2,y1,z1],[x2,y1,z2],cornervalues[3],cornervalues[7])

#Create the triangle
triangles = []
#for (i=0;triTable[cubeindex][i]!=-1;i+=3) {
i=0
while tritable[cubeindex][i] != -1:
triangles.append([vertlist[tritable[cubeindex][i  ]],
vertlist[tritable[cubeindex][i+1]],
vertlist[tritable[cubeindex][i+2]]])
i+=3

return triangles

def vertexinterp(isolevel,p1,p2,valp1,valp2):
if (ABS(isolevel-valp1) < 0.00001):
return p1
if (ABS(isolevel-valp2) < 0.00001):
return p2
if (ABS(valp1-valp2) < 0.00001):
return p1
mu = (isolevel - valp1) / (valp2 - valp1);
x = p1[0] + mu * (p2[0] - p1[0]);
y = p1[1] + mu * (p2[1] - p1[1]);
z = p1[2] + mu * (p2[2] - p1[2]);

return x,y,z

def create_mesh_for(objname,verts,faces):
me = bpy.data.meshes.new(objname)  # create a new mesh
me.from_pydata(verts,[],faces)
me.update()      # update the mesh with the new data

bm = bmesh.new()
bm.from_mesh(me)
bmesh.ops.remove_doubles(bm, verts=bm.verts, dist=0.01)
bm.to_mesh(me)

ob = bpy.data.objects.new(objname,me) # create a new object
ob.data = me          # link the mesh data to the object
return ob

def creategeometry(verts):
faces=[]
faceoffset=0
for ver in verts:
if len(ver)==4:
faces.append((faceoffset+0,faceoffset+1,faceoffset+2,faceoffset+3))
faceoffset+=4
elif len(ver)==3:
faces.append((faceoffset+0,faceoffset+1,faceoffset+2))
faceoffset+=3
return list(chain.from_iterable(verts)),faces

def make_object_in_scene(verts, scene):
verts,faces=creategeometry(verts)
block=create_mesh_for("block",verts,faces)

scene.collection.objects.link(block)
selectobj(block)

return block

def selectobj(obj):
for o2 in bpy.context.scene.objects:
o2.select_set(o2==obj)
bpy.context.view_layer.objects.active=obj

#a threshold function:
borders=[5,5,5]

def arange(start, stop, step):
r = start
while r < stop:
yield r
r += step

def cellloop(p0,p1,r):
for z in arange(p0[2],p1[2],r[2]):
for y in arange(p0[1],p1[1],r[1]):
for x in arange(p0[0],p1[0],r[0]):
yield x,y,z

def cornerloop(x,y,z):
for cz in (0,z):
for cy,cx in zip((0,y,y,0),(0,0,x,x)):
yield cx,cy,cz

def isosurface(p0,p1,resolution,isolevel,isofunc):
r=[(x1-x0)/sw for x0,x1,sw in zip(p0,p1,resolution)]

triangles=[]
z_a = p0[2]
z_plane_a = [ [ isofunc([x,y,z_a]) for y in arange(p0[1], p1[1], r[1]) ] for x in arange(p0[0], p1[0], r[0])]

c_loop_1 = list( cornerloop(1,1,1) )

cornervalues = [0]*8

for z in arange(p0[2], p1[2], r[2]):
z2 = z + r[2]
z_plane_b = [ [ isofunc([x,y, z2]) for y in arange(p0[1], p1[1], r[1])] for x in arange(p0[0], p1[0], r[0])]
for yi in range(len(z_plane_a[0]) -1):
y = p0[1]+yi*r[1]
y2 = y + r[1]
for xi in range(len(z_plane_a)-1):
x = p0[0]+xi*r[0]
x2 = x + r[0]
if True:
cornervalues = [
z_plane_a[xi][yi],
z_plane_a[xi][yi+1],
z_plane_a[xi+1][yi+1],
z_plane_a[xi+1][yi],
z_plane_b[xi][yi],
z_plane_b[xi][yi+1],
z_plane_b[xi+1][yi+1],
z_plane_b[xi+1][yi],
]
else:
cornervalues = [ (z_plane_a if cz==0 else z_plane_b)[xi+cx][yi+cy] for cx,cy,cz in c_loop_1]

triangles.extend(polygonise(cornervalues, isolevel, x,y,z, x2, y2, z2))
z_plane_a = z_plane_b

return make_object_in_scene(triangles, bpy.context.scene)

if __name__=="__main__":
main()
``````

That is not the addon / cython accelerate ld version though eh?

You talking about the CubeSurfer addon?

1 Like