
 

A guide for Blender users to construct and operate an affordable, 
small-scale, self-contained render farm that can be operated from a  
domestic studio. 

�1



FOREWORD

This handbook has four parts, a primer, a host build guide, a software installation instruction and an operators 
manual.

The primer exposes the technical background and development methods on which the solution is based.  It is 
intended for newbies to Linux and local area networks who want to clarify some doubtful points so they can 
focus on building the render farm. 

The host build guide does not aim to achieve the high performance of a commercial installation.  Its goal is to  
establish an easy to operate, cost-effective, flexible rendering platform that can be operated from a studio with 
access to only limited domestic electrical power.  The hardware build is designed to enable the installation of 
the essential software for using both CPU and GPU rendering.   

The software installation instruction contains detailed procedures starting from a bare hardware platform to a 
working render farm.   It should first be read carefully until it is clearly understood and double checked if any 
content is uncertain.      

The operators manual includes the basic render process and routine maintenance.

As the title suggests, this is a starting point from which improvements in harware and software are posssible 
however it is a workable, if highly manual configuration.  

Wayne (Wazza) McGrath  

�2



Part 1 - Primer

Render Farm Overview

Design Guidelines

The design and configuration goals were aimed at limiting administrative overhead.  This is achieved by using 
a standard software configuration.   Host machines are constructed to a minimal technical spec as there are 
advantages to minimising variations in build.  Costs are reduced by using remote access without the need for 
individual monitors and keyboards on each host.  Achieving these goals requires customisation above what is 
needed for a standard installation ‘out of the box’. 

This render farm design utilises four classes of host machine:

animation (artist) workstation - used for modelling, sculpting, animating, audio editing and producing a 
completed animation file ready for rendering.

master render host - used to configure settings on the animation file to be rendered,  initiate render tasks, 
accumulate rendered images and perform image rendering and compositing tasks,

render host(s) - used for the single purpose of reading an animation file, rendering frames and returning 
rendered images,

Network Access Storage host (NAS) - used to store animation resources and archive completed animation, 
audio and video files.

An animation workstation will require a CPU architecture with fast single core operations while still allowing 
sufficiently fast multi-core operations. It will also require GPU support and multiple fast memory channels and 
storage devices.   A workstation that will not struggle with complex animation scenes needs to be built to a 
performance specification.   That said, an artist may use their preferred platform as long as it is viable.  
However to meet requirements for efficient rendering and flexible networking, the master, render hosts and 
NAS will use Linux in order to minimise cost and use the inherent capacity of Linux for customisation.

A remote desktop connection is used to minimise the need for individual monitors and keyboards.  To achieve 
fast LAN communications, the master and render machines are net-worked using a Gigabyte Ethernet switch.  
The switch can be isolated from all other networks during a render operation.

LINUX UPSIDE

A render farm is a special purpose application of hardware and software technologies including multi-core 
CPUs and GPUs, highly efficient interprocess communications and optimised device drivers and task 
scheduling.   Windows and Mac provide general purpose solutions that can be used as host machines but at a 
premium.  Linux is free, reliable and is more flexible due to free and easy access to software and tools. There 
is an advantage in having the option to develop custom solutions to specific issues.  

Customisation sometimes depends on access to source code and Linux is founded on the principle that a 
solution provider should have code access to de-bug it, improve it, expand it, remove security flaws or 
integrate it with other software.  Linux provides the opportunity to easily add additional features and to some 
extent, remove unneeded functionality. 

�3



Software bugs are inevitable and getting them fixed can make a big difference.  Commercial systems are 
generally not responsive to reported bugs and fixing a bug is subject to commercial considerations however 
Linux developers value their reputation and may be prepared to correct a problem and release an update.
 
LINUX DOWNSIDE

The kernel has evolved over numerous versions and development has forked into numerous distributions or 
‘distros’ resulting in potential for incompatibility.   Adopting Linux assumes sufficient knowledge to perform 
tasks by accurately entering commands via a terminal.  This can be risky as not all commands work the same 
way on all versions.  The shell used to interpret commands and the package managers (dpkg, RPM, SNAP) 
used to install applications may vary.  This means some ‘how to’ guides could be misleading.  Care is needed 
to ensure they are relevant.  

Although not unique to Linux, additional utilities may need to be installed and kernel dependancies may need 
to be updated prior to a compilation or installation of new software, so it is necessary to determine what 
dependancies are currently installed to avoid problems.

Distros are categorised as ‘light’, ‘standard’ or ‘server’ with each being optimised for different roles.  A good 
choice of distro is one that provides only the essential kernel and application services required to operate as a 
system but all of the device drivers, utilities and tools needed to do rendering.  Unfortunately the ‘light’ versions 
of Linux are customised for older machines and may not support all the services needed for more recent high 
performance devices.  There are standard versions with a full-feature desktop GUI and an excellent range of 
end-user applications installed, however the GUI consumes resources needed for rendering and most 
applications are unneeded on a ender host.  Server versions are preferred by operators of large scale render 
farms but they are ‘headless’, meaning they don’t have a desktop GUI and are optimised to support large-scale 
software such as databases and web servers.  All that is required is a ‘host’ that is optimised to support one 
application, Blender and a few desktop utilities so a desktop GUI, albeit a scaled down one, is necessary.       

A thorough search is unlikely to find a distro that can just be downloaded, installed and then is ready for 
rendering.   Customisation is inevitable.  Installing additional software is straight forward however removing 
unneeded services to free up resources for rendering can’t be achieved without expert knowledge of services, 
utilities, kernel dependencies and boot processes.  

�4



LINUX CUSTOMISATION STRATEGY

Successful customisation is more likely if a suitable version of Linux is used to begin with.  This does not imply 
any particular version is not useful, just less suitable in the context of rendering.  The desktop GUI  is often 
what influences the choice of distro however it is not significant for render farm customisation.

Although a gross simplification Linux can be thought of as a software architecture consisting of a kernel that 
controls the basic operation, a suite of application support services, a user interface and a set of end-user 
applications.  Linux has developed into several major variants.  Within those variants are a wide range of 
versions available from ‘distro’ developers.  A distro will be based on the kernel of one of the major variants but 
will offer alternative configurations of services, user interface and end-user applications. A distro is often aimed 
at meeting the needs of a niche user group, e.g. virtualised environments, office workers, specialist 
applications, home users or gamers.  

The candidates for a starting configuration are a ‘light’ , ‘standard’  or ‘server’ distro.   The light and server 
distros require solving difficult customisation problems due to insufficient device drivers or lack of a GUI.  
Customisation is mainly achieved by adding additional services, removing un-needed services or compiling 
additional modules into the kernel.  The services on standard Linux can be easily enabled, started, halted, 
restarted and disabled and installing a required service from a supported repository is usually a straight 
forward administrative task but compiling a module into the kernel, for example a device driver, may be hit and 
miss without an intimate knowledge of the process. 

Most all standard versions will typically have good support for custom services via their on-line repositories.   A 
distro that incorporates ‘closed’ or non-open source device drivers can be a real plus but some developers hold 
firmly to an ‘all open source’ configuration.  Some have support for closed device drivers and options to limit 
the number of end-user applications, however they mostly include a desktop GUI user interface that consumes 
significant memory and processor resources.  
      
Given that there is less risk in managing services on a desktop version than in installing additional services on 
a light version, and that a X-windows GUI will be needed for remote connections, a practical approach is to 
select a proven, current desktop version with support for closed device drivers and an option for a minimal 
installation. 

�5



Render Farm Administration 

HOST IDENTIFICATION

Efficient network operation will require that each host machine is quickly identified by assigning host names, 
allocating IP addresses and recording MAC addresses.  Hostnames can be assigned as a unique name.  IP 
addresses are allocated from a pool of available address numbers.  MAC addresses are serialised by an 
industrial organisation, allocated to manufacturers and used to electronically label an installable device. 

Hostname

There are several mechanisms used to identify a specific machine or group of machines but no one single 
identifier can be used in all situations.   Groups of machines may be identified by the name of the network they 
are connect to or a workgroup name assigned to several machines that share resources like files and printers.   
Hardware devices installed in a machine have built in identifiers but they could fail and be replaced.   A single 
machine may have more than one network address if it is connected to more than one network (e.g. Ethernet 
and Wifi).  So a mechanism is needed to uniquely and permanently identify a specific host machine.  The 
hostname is a human readable name given to the operating system within a host machine.  Host means ‘host 
to one or more applications’.  It must be unique within the network(s) the machine is connected and is used as 
the basis of a resource locater to identify and access resources on the host such as a shared file, e.g. //
hostname/directory/filename.  Each host on a network can maintain a lookup table of other hosts by recording 
their hostname in a special file.  A more generalised naming convention is used to identify hosts on the 
Internet.  An Internet host name is recorded in a Domain Name Service (DNS) and its resources are identified 
by a universal resource locator (URL).  A Hostname lookup table is required to locate resources used by the 
render operation however a DNS is not required.

The Hostname must be alpha-numeric and can be dot separated elements up to 253 characters in length 
however a single element of up to 63 characters will be sufficient.

IP Address

An IP (Internet Protocol) address is a number, like a post-box number, that is the primary means of routing 
communication messages between hosts in a network.  Each host transmits and receives messages via an 
internal memory address called a communications socket.  The external socket identifier consists of a port 
number plus an address number, the IP address.  Port numbers identify a communications protocol and are 
allocated by an organisation that controls Internet technical standards.  IP addresses are normally allocated 
dynamically to a host by a Gateway/router for a limited period of time (lease) after which it expires and is 
returned to the allocation pool.  This means it is not possible to be absolutely sure of a hosts IP address at any 
given time and in turn socket to socket communications is not reliable.  The issue is resolved by using a 
network protocol that broadcasts a request message to the entire network and records all responses in a 
lookup table that associates the allocated IP address with the permanent Hostname.  

To avoid spending valuable time searching for IP addresses, the hosts in a render farm must have a 
permanently leased IP address.  The permanently leased or static address is registered with the Gateway/
router to ensure it is not reallocated and registered with all other hosts for efficient communication.  IP 
addresses are also recorded by the Ethernet switch to optimise connections and transmission rates.

An IP address is represented by four dot separated numbers each in the range of 0-255.  The protocol ports 
are represented by a four digit number. 

�6

hostname://Filename
hostname://Filename


MAC Address

A media access control (MAC) address is a unique hexadecimal number that identifies a network interface 
card/device (NIC).  If the NIC is moved to a different host, the MAC address goes with it.  Separate MAC 
addresses are used for an Ethernet NIC and a Wifi NIC.  The ethernet MAC address is used by the network 
switch to enable hardware level switching and also used on the Gateway/Router to associate a NIC with a 
statically allocated IP address.   Care must be taken to obtain the ethernet MAC address and not a Wifi 
address.

A MAC address is represented by six, colon separated hexadecimal numbers. 

Gateway and DNS Addresses

A host on a LAN is not able to communicate directly with servers on the Internet and must pass requests 
through a router device that connects to an Internet Service Provider (ISP) via a modem.  The combination of 
router and modem is called a gateway.  The gateway also provides other services to hosts on the LAN such as 
allocating IP addresses (DHCP service) and hosting sharable USB file storage.  

The gateway has two permanent IP addresses, one for use in the Internet allocated by the ISP and one for use 
in the local area network allocated from a local subnet. The local subnet range is 192.168.0.1 thru 
192.168.0.255 and the gateway is allocated the first address in the range, 192.168.0.1   Each host on a LAN 
needs to register the gateways local IP address to use when communicating with the Internet.  An external 
Internet IP address is not required by the hosts on the LAN.  The gateway uses its Internet address on behalf 
on local hosts and so the same local subnet range can be used on all local area networks.  In the Internet, a 
LAN host is effectively identified by two IP addresses, the gateway address and its local area address. 

A DNS services for locating domain names is not available on a LAN, but a host on a LAN can use any 
available external DNS service by recording its Internet IP address along with its IP adress and the gateway 
address.  If a preferred DNS address is not recorded on a host, the gateway will provide a default server 
address usually one preferred by the ISP.

Render farm hosts do not need a DNS service as might a gaming machine, so the DNS address should be left 
to default to the Gateway IP address.  It may be more secure to avoid well known DNS servers that potentially 
could probe the communication ports of a LAN based host.  

�7



ISSUING COMMANDS

An administrators job is primarily issuing commands (accurately and precisely).  A command is a directive to 
execute a program.  The command may have optional parameters that are passed to the program to modify its 
behaviour.  They can be issued from from a desktop environment via a graphical launcher program however in 
Linux, commands are typically executed from a command prompt ($) within a desktop program referred to as a 
terminal emulator.  Commands may be issued directly from the console on a headless host that has no 
graphical desktop environment.  Note: The up arrow and down arrow functions are very useful to recall 
previous commands and make the job easier.

Programs 

A program command is used to initiate an executable program.  An executable is a file of machine instructions 
with a prefix of information that allows them to be loaded into memory and fetched by the CPU for execution.  
The command is the name of the executable program file and may have parameters to modify program 
behaviour.  An example is the command to initiate Blender, $ blender. 

Scripts

A scripting language is a specialised programming language that can be embedded and interpreted within an 
executable.  A script can be used by a web browser to add additional functionality to a web page or can be 
used within Blender to add additional functionality such as an add-on.   Numerous scripting languages are 
available.  Some are specialised for web page functionality e.g. JavaScript.  Others are general purpose 
languages that can run independently or within an executable, e.g. Python.

Shell Commands

The commands used to direct the kernel and manage the file system are entered into a command interpreter 
program called the shell (usually the bash shell).  Shell commands can be executed from any place in the file 
system.  Some commands can only be issued by a system administrator (sudo commands).  Shell commands 
often have optional parameters that modify the behaviour of the command.

Shell Scripts 

Multiple shell commands can be grouped together in a text file called a shell script and executed with one 
command based on the file name.  In Linux it is not possible to code shell comands in a text file and immediatly 
execute it.  To protect against inadvertant mistakes, the text file permissions have to be changed to make it 
recognisable as executable commands (chmod).  Shell scripts are typically used to automate admin functions.  
As well as shell commands they can be used to execute programs, script languages and other shell scripts.

Directives

A form of command that is not issued via a shell or executable is a configuration directive.   Directives are 
stored in a text file with a specific format that is interpreted by a kernel program during the boot process or 
during background system operation.  The most comprehensive set of directives is available via by a module 
called systemd.

COMMAND ALTERNATIVES

Linux has a history of accumulating numerous single purpose utilities in keeping with a philosophy of writing 
self contained functions.  (Faster to develop, easier to maintain and programers can stay out of each others 

�8



way.)  The downside is there are a lot of commands to learn and sometimes it is uncertain which utilities are 
present on a host.  The need to standardise on a multi-function module now dominates the need to develop 
multiple alternatives.  This can be confusing on a system configured with a multi-function module plus 
numerous single purpose modules that perform similar roles.  Nonetheless the systemd kernel module is a 
ubiquitous tool for controlling many aspects of how Linux functions, so if in doubt use a systemd command.

Systemd Units 

Systemd utilises directives in a configuration text file called a unit file.  There is no absolute requirement for 
where a unit file may be stored, however a good management practice is to store them in a folder structure that 
organises them into service units that define a service, drop-in units that can overwrite aspects of a service and 
run units that execute once only.    Typically service units are stored in /lib/systemd/system, drop-in units are 
stored in /etc/systemd/system and run units are stored in /run/systemd/system. If these conventions are 
observed a software package update process will be more reliable as the package manager can easily locate 
updatable service units.

Shell Scripts

Shell scripts are typically used to automate admin functions.  They can be stored anywhere within the file 
system however a good management practice is to default to a particular folder depending on who needs to 
use the scripts.  Scripts used by just one user may be stored in their home directory i.e. /<username>/home/
bin.  Scripts available to all users may be stored in the folder structure for user applications i.e. /usr/local/bin.  
Scripts used only by a system administrator may be stored in a special folder in the user folder structure i.e. /
usr/sbin (bin implies binary code).

�9



Render Engine Algorithms, Middleware and Processing Models 

Potted History

The core of render engine functionality is the ray trace algorithm, its variants and enhancements.  Ray tracing 
algorithms perform many geometric and trigonometric calculations.  They were originally coded to use a single 
CPU core but refactored to use threads when multi-core CPUs became available.  Although multi-core CPUs 
are utilised for parallel threads the commercial driver for developing multi-core CPUs is a server that can 
support multiple general-purpose users, not one special application of parallel floating point calculations.

The first GPUs were used for video display and provided only Z buffer functions.  Rendering algorithms such 
as the Bresenham raster algorithm were still coded in application software.  Over time, specialised high 
performance processors like numerical processing units, digital signal processing units, large scale floating 
point arrays and gate arrays were developed for special near real time applications.   Game console 
manufactures notably Nintendo, developed the techniques for integrating the units to operate in parallel.   The 
processing units and integration techniques were combined with the video raster devices and the modern GPU 
was born.  The next phase of development was to develop ray trace processors that made massively parallel 
concurrent floating point operations possible.  The processors are supported by parallel processing models on 
which ray trace algorithms are practical.  

Although there remain many algorithms used in animation that require a powerful CPU the performance of a 
GPU with ray trace processors can greatly outperform a multi core CPU, although there are arguments that the 
true ray trace algorithm and therefore image quality is compromised.  The commercial driver for high 
performance GPUs is not image rendering but artificial intelligence, science based applications such as 
weather forecasting and financial based applications such as crypto coin mining.  The objective for ray trace 
capability on GPUs is not the highest possible image quality but near real time rendering of video game 
displays with complex spacial content.  

It may be misleading to regard either multi-core CPUs or GPUs as ideal for rendering images for animation.  
One is too slow, the other has questionable quality or imposes specialist technical knowledge on creative 
artists.   Older or low end GPUs will not have ray trace capability.  Ray trace capable GPUs are identifiable by 
their support for a parallel processing model and the API libraries and device drivers that enable them.    

CPU vs GPU Concurrency  

The CPU rendering model defines computational threads but relies on the operating system kernel to create 
processes that allocate the threads to CPU cores.  A render engine can utilise many CPUs concurrently by 
using the kernel scheduler module as middleware.  The inputs of each concurrent operation are all the same 
and the output quality of each operation is consistent with the inputs.   This fact, plus the capacity to render 
very large hi-poly 3D scenes is reason for retaining CPU render capacity.

GPU middleware accesses hardware functions via an abstraction layer that hides the details of its ‘metal’  
operation.  GPUs also have multiple modes of operation, e.g. raster, floating point numerics, ray trace tensors, 
digital signal processing and artificial intelligence inferencing.  As each requires its own processor and 
abstraction layer, GPUs may not have identical implementations of an API.   Concurrency has two levels of 
complexity, concurrency within a GPU's devices and concurrency among different GPUs.

Currently there is no heterogeneous parallel processing standard for render engine developers to adopt.  
Programming different GPUs to work concurrently to the same quality is difficult or impossible.  It may be 

�10



misleading to say that GPUs are superior to CPUs.  There are tradeoffs between throughput, image quality, 
power consumption, software development and ease of use.

GPU and Render Engine APIs       

Application software accesses the functions of a hardware device via a type of contract called an Application 
Programming Interface (API).  Essentially the contract specifies what functions the device will perform if given 
specific commands and data by the software. 

The most common video display APIs are OpenGL and DirectX.  Fortunately most vendors support OpenGL as 
the standard video API, however an end-user application like Blender may require a particular version of the 
OpenGL standard and cannot use an older GPU that does not support it.  In other cases the GPU may be 
compatible with Blenders OpenGL graphical display but incompatible with the API used by the render engine to 
access a GPU.   Application sofware, render engine software and GPU middleware can be at odds.  Careful 
analysis of API version requirements is essential to prevent wasted time and money.

Parallel processing models, middleware and APIs have a longer development time than a GPU device model 
and will likely be around for the release of several GPU models.

�11



Selecting CPUs and GPUs  

GPU Selection by Shortlisting

Choosing a standard CPU or GPU may be achieved by performing a rational selection exercise.  Shortlisting 
will avoid ending up with incompatible software and hardware.  It may also assist with understanding GPU 
technologies and their upgrade pathways. 

The selection process begins with the animation application package and all potential render engines it might 
use as these items contain the subject matter that require the most investment in learning.  In this case 
Blender has been selected along with Cycles and potentially other render engines that are compatible with 
Cycles.  Graphical display APIs and image rendering APIs/models are the main determinants of GPUs for a 
render farm.  

Start the list by noting what graphics APIs are supported by the application and what rendering APIs are 
supported by the render engines.   Where there are multiple supported APIs, research into their relative merits 
can be used to note the preferred APIs.  As used here, API includes processing models, middleware and 
hardware abstraction layers.   

Next compile a list of GPU models that support both sets of APIs.  GPUs are often manufactured in a series 
beginning with a base model followed by variants with increasing capabilities but all based on the same 
architecture.   APIs are typically standardised to operate on the base model and subsequent devices in the 
series, so a list of GPU models is useful to identify APIs and potential GPU upgrades.  Once it is clear what 
APIs are viable the preferred APIs can be revised and the GPU list reduced to the models that support 
preferred APIs.

Finally the GPUs that have efficient Linux device drivers are determined and then the most affordable and 
powerful GPU can be selected.

CPU Selection by Comparative Performance

Selecting a CPU is less complicated however there are distinctions that can be made between a suitable 
processor and one that is no so suitable.  All CPUs will have a base clock speed and core count that are the 
first features to directly compare.  The CPUs in a render farm must not overheat so over-clocking is irrelevant 
as a selection feature.  Some CPUs have additional circuits that enable more than one software thread per 
core, these are referred to as logical cores or threads (threads are really a software thing).  Most of the 
instructions will be computational so a CPU core with a superior Arithmetic Logic Unit (ALU) will perform faster.  
Older multicore CPUs manufactured for server operation may not have efficient ALUs as they were not critical.  
CPUs have internal cache memory (LU) used to store the data most likely needed for the next instruction and 
the larger the LU size the better the performance.  Chip fabrication processes are measured in nanometers.  
The smaller the nanometer technology the faster the chip can operate.  The more logical cores the better.  
Fewer than 8 is not recommended.      

Parallel Processing Standards

In order to use a combination of CPU cores and multiple GPUs, a parallel processing standard is required. The 
Internet is viable due to the software standards issued by the W3C, however parallel processing architectures 
are still under development and there are no equivalent standards organisation.  Some use distinct channels 
for CPU instructions vs GPU instructions and others using a single channel for both.  Understandably,  
software developers prefer an API that offers a single channel accessible with a single module.  This narrows 

�12



the choices of API down from the wider concerns of parallel computing to the APIs supported by gaming GPU 
vendors and render engine developers.

GPU API Standards       

OpenGL is widely supported by GPU vendors as a graphics display API however only the later versions may 
be compatible with current application software.   There are several competing APIs for GPU image rendering 
via a software render engine.  The most prevalent are Metal, CUDA, Optix and OpenCL.  OpenCL is standards 
based but primarily supported by AMD Radeon.  Metal is specific to AMD Radeon GPUs on Apple Mac and 
CUDA and Optix are specific to Nvidia GPUs beginning in the GTX and RTX models.  Vendors usually don’t 
participant in the open source industry to provide parallel processing device drivers and as a consequence, 
open source alternative drivers while a worthy effort, are reverse engineered and often inefficient when 
compared to a closed source option from the manufacturer.  

OpenCL is a standard supported by AMD and nominally by Nvidia, however AMD have been active in assisting 
the development of device drivers for Linux and as a result AMD GPUs are compatible with most Linux distros.  
Nvidia drivers are included on only some Linux distros e.g. Ubuntu.  Currently pop OS is regarded as the 
benchmark solution provider for using Nvidia GPU technology.  Although AMD GPU drivers can be readily 
installed on Linux their use is limited by the fact that current versions of the Cycles render engine only supports 
AMD cards with GCN Next 2 or later hardware architectures.  Also, it is generally acknowledged that Nvidia 
CUDA and Optix technologies in particular, perform better (faster) on Linux when using proprietary (closed 
source) drivers.

To add to the mix there are several alternative render engines, some of which are compatible with Cycles, with 
potential to perform faster due the use of compiled languages and optimised object code.  AMD Radeon has 
developed the Prorender engine with device drivers for all major operating systems, however it uses its own 
material library.

In summary, the current situation means either a choice has to be made between Nvidia GPUs with CUDA/ 
Optix technologies and AMD GPUs with GCN2+ technologies.  Otherwise the render farm software must 
include custom scripts for detecting and utilising whatever GPU is installed, without compromising quality or 
the render parameters set by an animator.

�13



Network Rendering 

A render farm the builder is spoiled for choice of operating system, motherboard, CPU and GPU, however the 
list of choices for a small scale network rendering controller is thin. 

A Short Digression

A puzzle for archaeologists is that ancient deities from Sumeria and other parts of the globe are depicted as 
carrying a hand bag and they ponder what could be in the bag.  A software architect might not be so perplexed 
and immediately quip that it is obviously ‘functionality’.  They would know this because software is just a bag of 
functionality.  They also know that over time adding more features to the bag can lead to functional bloat.  A 
software architects job is to determine what functionality is needed and where and how it can be deployed.  At 
some point non-essential functionality must be redeployed to make way for new essential functions.  Users rely 
on software architects to make decisions about what is essential for animation functionality but what is in the 
deities bag is essential management and control functionality.  Modern software architecture separates the 
requirements for control from those of subject-matter or data.  Like the winged deity, render farm operators 
must make their own arrangements for their bag of control and management functions.

Adopting an Operating Model

Operators of an animation studio must determine what degree of control they want over the render process 
and how much capability they have for implementing their management requirements on top of their subject-
matter and creative requirements.  Rendering capability can be implemented with three basic models, the 
cloud, the crowd and the sole user.  

The cloud provides functional transparency of the rendering process.  The user uploads a .blend file via a web 
browser and waits for notification that the finished output is available for download.  No knowledge of, or 
control over, the rendering process is necessary on the part of the user.

The crowd model is an aggregation of several users with local hosts using the the internet to inter-connect 
them.  The functionality is not completely transparent.   The end-to-end process is managed by a third party 
master controller but each user must install slave software on all their participating hosts and control their 
operation.  

The sole user model is an aggregation of hosts on a local area network that operates independently of the 
internet and third party controllers.  Control of the entire end-to-end process must be implemented and 
managed by the operator using a commercial render farm package or a custom solution.

The network rendering solution that follows is based on the sole user model.  It does not preclude the use of 
the cloud or the crowd but makes no particular allowance for them.                   

End-to-end Process Requirements

Process requirements need be clearly articulated as the basis for a technical solution.

A drop-box is needed so an artist can upload an animation file for processing and go back to work without 
being concerned about the render farm operation.  The drop-box is also needed to post a job ticket containing 
job related information such as wether the job is production, rework or test, the frames to be rendered and any 
render options offered by the render farm.

�14



A work directory is needed to set render properties.  Although properties can be set on the workstation, the 
devices and render engine may be different to those on the render farm.  There is more flexibility and 
consistency if some settings are targeted at the devices and render engines present render hosts.        

A central distribution point is needed to guarantee access to read render input files for the duration of the 
render process.

A central aggregation point is needed to guarantee access to write output files for the duration of the render 
process.

The implementation of the distribution and aggregation points should not determine how files are distributed or 
aggregated.  They should function as shared storage locations that support multiple rendering models.

The implementation of the rendering task should not determine how the render is initiated.  A render task 
should be able to be initated from a comand line, a GUI or even voice activation and remote control.
   
Some requirements are not-so-obvious.

Does the farm need to support concurrent render processes?

Is there a need to estimate render duration time?

Is there a need to halt the render process for an unspecified period and then resume?

Is there a need for rework to be rendered to the same settings and quality as the original.

Is there a need for a status report?

There are obvious disadvantages if an artist can’t continue to work during a long render so offloading a test 
render to the render farm is advantageous.  Also, parts of a previous render may need to be reworked.  To 
meet these requirements the distribution function should be able to to allocate all hosts to a single job or 
alternatively allocate them among concurrent processes such as test jobs, production jobs and rework jobs.

The larger the animation the more difficult it will become to assess how long the render will take.  An estimate 
will be useful in deciding if some adjustments will need to be made or a contingency to be utilised.  To meet the 
requirement the drop-box function should provide a job assessment.
 
As the farm will nominally operate from a domestic premises there may be occasions when the process is 
interrupted by external factors.  A power outage can be managed by using a UPS however that won’t deal with 
all possible hazards. Any problems can be somewhat managed if the render does not have to be restarted 
from the beginning.  There is a requirement to establish way points in all stages of the process that can be 
used to restart a partially completed job.

It is self evident that a completed job, over-due job or failed job needs to be reported at the earliest.  There is a 
requirement for a master controller to log job status and provide a status report on request, and for notification 
facility to alert of a failure or notify completion.
  

�15



Network Render Process

The main stages of the render process are shown below.  Fortunately Blender 2.83 LTS retains features that 
can be utilised to enable networked rendering and much of the entire process, as shown in blue.  Data oriented 
tasks such as rendering, compositing and video editing are performed by Blender however staging, distribution 
and aggregation are process control functions.

Centralised Distribution and Aggregation

A basic requirement for a render farm is for a render host to access the input file from a central distribution 
point and write the rendered output image files back to a central aggregation point.

Process Control

Another basic requirement is for a flexible means to control the render process.  The command line provides 
several options for issuing commands ranging from fully manual control, distributed shell files to centralised 
shell files or execution of commands via a programming language application.  

�16



The Network Render Solution

Remote Desktop Access

Access to the desktop of any host can be implemented using a remote access utility such as VNC.  This solves 
the need for interactive and manual control of hosts from a central point, i.e. the master host or a workstation.

Remote Commands

Commands can be issued from the master host across the network to a render host using the Secure Shell 
utility.  The master host effectively logs on to the render host and commands may be issued as if from the 
render host command line.  This includes initiating shell scripts and programs. Secure shell also supports 
piping the commands in a local (client) shell script to execute on the target host (server).

Network File Sharing  

Centralised points for storing files are called network shared directories or just “shares”.  Connection to a 
shared directory is achieved via a network protocol that exchanges well defined formatted messages as blocks 
of characters and multi-media content.   The Server Message Blocks (SMB) protocol and its variants the 
Common Internet File System (CIFS) are implemented on Linux as Samba.  It employs a request/response 
protocol and has two software components, a client that issues requests and a server that issues responses.  
Despite some drawbacks the Samba implementation of SMB is a workable choice for setting up shared 
directories on networks with Linux, Unix and Windows hosts as many NAS and file servers use it and there is 
good support from the Linux community.  The standard Unix/Linux protocol of NFS remains available as a 
contingency for file sharing.

Shared files are implemented on the render farm by installing a Samba service as a server on the master host 
and creating shared directories that are accessible by render hosts as SMB clients.  A Samba client does not 
need the Samba service to be installed.  Clients can access shared directories located on a server using the 
CIFS utility, smbclient module or the Nautilus file manager.  The CIFS utility can be used to to permanently 
mount the shares on each render host at boot-up.  The mounted shares appear in the file system as a local 
directory.  Nautilus file manager is equivalent to Windows Explorer and is useful for interactively browsing the 
network.

Seperate shares will be configured for test renders and production renders as well as shares for submitting 
animation files and retrieving completed video files.  

Background Processing

Blender can run as a background task and be passed command line arguments including the name of the input 
file and the name spec for output files.

Render Automation   

Automation includes preprocessor functions such as setting Blender properties and render task initiation 
functions.   Automation shells will be run from the master host, either locally to perform preprocessor tasks or 
using secure shell to run background rendering tasks on the render hosts.  Alternative automation models will 
be implemented to cater for maximum discretion of the animator subject to resolving any problems arrising if 
the frame allocation method is not set or when the animation workstation has different device types to the 
render hosts.
    

�17



Frame Allocation

The Blender Output Properties Tab has options to specify the start and end frames and options to switch on a 
Placeholder property to indicate a frame is currently being rendered and to switch off an Overwrite property to 
indicate any completed frame should be skipped over.  Using a central output shared directory and these 
properties and/or command line arguments Blender can effectively be used to co-ordinate the allocation of 
frames among render hosts.

CPU and GPU Rendering

Both CPU and GPU rendering will be implemented.  GPU rendering is faster than CPU rendering however a 
CPU render will have more system memory to process very large files.   To some extent is practical to use 
GPUs from different vendors on the same render job by using the hosts Blenders system preferences to 
permanently set the type of GPU device (CUDA, Optix, OpenCL) and using a Python script to set local device 
properties prior to a render.  To achieve consistent image quality, a standard GPU model is recommended.

The render farm does not preempt the intentions of an animator so some settings that will impact on render 
time, e.g. baking, will remain the prerogative of the animator.  Each preprocessor will save a new version of the 
original and add a label to the beginning of the file name so it can be clearly identified for rendering.  The 
labelling is useful to endure that any subsequent rework is rendered to the same quality.  The preprocessed 
files are retained with the original for archiving.  The build has multiple cores but only one GPU to limit power 
consumption.  An advantage of having one GPU is that the render hosts Blender user preferences can be set 
to the relevant render type, i.e. None, Cuda, Optix or OpenCL.  This simplifies the python script to switch 
between CPU device or GPU device and avoids problems that can occur in the wrong combination of type and 
device are set.  Options will be available to perform a CPU render, GPU render or both.

Preprocessing

Preprocessing is non optional.  Its essential function is to switch off the Overwrite property and switch on the 
Placeholder property so the frame allocation method will work.  All preprocessor scripts must perform this 
function on the animation file and the settings maintained when archived.  Animators should change their 
default settings to enable the method however as the standard Blender settings are the opposite to what is 
essential, all files must be preprocessed before rendering to avoid a disaster.  The function will also be 
performed locally on all render hosts Blender as a contingency however these settings cannot be saved to the 
animation file.   Other preprocessor scripts set settings for quality, render speed and render  device. 

Model 1 Render

The animator has options.  Prior to rendering the settings in the submitted animation file may, at the request of 
the animator, be over-written using shell scripts with Python preprocessor functions.  This is to achieve 
consitent quality, opt for the fastest render time (usually for a test) or render with the original settings.  The 
quality options available are High Image Quality (HIQ) or Fast Render Time (FRT).  The  animator can also 
request either a GPU or CPU render and the preprocessor will set optimal render settings for either.  The file is 
preprocessed in a staging directory sepate from the shared directories.  CPU thread allocation is set to auto, 
leaving scope for the operating system to manage concurrent render processes.  The image sequence type 
also has to be standardised as there is potential for duplication of the same sequence name with different 
extensions, e.g. fram12.png and fram12.jpg. 

Model 2 Render

�18



The animator has the same options as Model 1 and GPU processing will be as per Model 1 however CPU 
thread allocation will be based on a formula.  The number of threads allocated depends on the numer of logical 
cores on the processor.  This model is for allocating the maximum threads to a render while leaving threads for 
the operating system and other processes.

Image Render and Compositing

The output of all renders will be a sequence of images that need to be rendered into a video file.  A non-
compression video format is highly recommended for editing as an mp4 codec will reduce the quality on every 
edit.  If mp4 is required it should be the last conversion.  Image rendering can be performed on the master 
host.  Compositing maybe performed on the master host using its Blender installation.  A directory will be 
created on the master host for shell .blend files with prepared compositing nodes.  Compositing will be a 
manual process but image rendering could be automated with a Python script.  Audio editing should be 
performed on a workstation with access to the required audio applications.  

Render Planning and Scheduling

A simple text job ticket can accompany the animation file at submission, to specify render options.  A folder for 
storing job tickets will be created on the master host.  A  spread sheet can be used to plan and allocate render 
jobs to hosts.  The spread sheet can be a simple paper pro-forma or a spread sheet application can be 
installed on the master host.   Estimation of render times can be automated using python scripts to collect 
sizing data from an animation file (e.g. number of vertices and number of frames) and calculated by the 
scheduling spreadsheet.  Alternatively the estimate can be calculated by the animator and included on the job 
ticket.  There are potential for scheduling errors if the animator does not provide a reasonable estimate or if 
they calculate it based on the wrong render settings or a different render type than used in the render farm. 
However there are advantages in calculating the estimate at the workstation.   Although it is somewhat 
complicated, calculating good estimates is a major factor in getting the most use of the render farm with lest 
wasted processing time.  

The animator can set Thread mode to Fixed and threads to 1, then render a single frame using the CPU to 
obtain the duration per frame (in seconds).  This value can be regarded as the Likely Thread Duration.  Then 
metrics such as the number of vertices can be used to calculate a second per thread duration estimate.  A third 
estimate can be calculated from a history of similar renders.  The longest duration of these becomes the Worst 
Case Thread Duration and the shortest the Best Case Thread Duration.  These values are submitted on the job 
ticket along with the number of frames and used by the scheduling spreadsheet to calculate a weighted 
average, the Expected Per-thread Frame Duration .  This value can be multiplied by a GPU accelerator factor 
to obtain the Expected Per-GPU Frame Duration.  These values can be saved for history based estimates then 
used to calculate the Expected CPU Render Duration and Expected GPU Render Duration.  The Expected 
CPU Render Time is calculated as the Expected Per-thread Frame Duration x number of allocated threads x 
number of frames.  The Expected GPU Render Time is calculated as Expected Per-GPU Frame Duration x 
number of frames.                          

Process Monitoring
 
Controlling the infrastructure so that it applies the maximum resources toward the render process implies 
halting other unnecessary processes and redirecting the freed resources.  Infrastructure resources include 
CPU cores and threads, RAM, storage, input/output channels and network traffic.   Process monitoring tools 
are installed to identify where delays and bottlenecks occur due to resource content with unneeded processes.  
Different tools may be needed depending on the render device in use. 

�19



Performance Optimisation 

Performance optimisation aims to reduce resource contention and direct the maximum machine resources to 
the render engine.  Resources under contention include CPU cores, lu memory, RAM, cache, storage devices, 
data  bus, control bus and communication channels.   A process may have to wait on hold until shared 
resources become available so reducing the waiting period is beneficial.  This may be achieved by halting all 
non-essential services or adjusting their priority and resource settings (e.g. swapiness).  Performance 
monitoring tools are available to identify bottlenecks.

In some cases the contention for resources may occur between the kernel and the render process.  If all CPU 
threads are allocated to the render task the kernel will need to continually interrupt the processes and obtain 
control of cores to perform critical machine functions.  The interrupt process is time consuming and improved 
performance may result from dedicating separate cores to the kernel process and the render process.   Special 
techniques are needed to manage CPU/thread affinity and scheduler context switching.  In other cases the 
render engine settings for the number of tiles may make a significant difference.

Render performance may also be enhanced by hardware optimisations such using the RAM type 
recommended for a CPU.   SSD memory can be accessed directly from some CPUs and measurable 
improvements can be made by providing seperate SSD devices and memory access channels for application 
data and the operating system.  

OPTIMISATION TARGETS

Linux can operate in several modes (run levels), with each providing a different level of services.  Rendering 
with Blender requires multi-user mode (run level 3).  Unfortunately multi-user mode provides many services 
and applications that are not needed for the render task.   Examples of non-essential applications and services 
are:

- unnecessary autostart user applications
- automatic notifications services
- automatic application software update services
- automatic operating system updates services
- unused application level services
- unused network services

Services are part of the operating system and managed by the systemd module.  Applications are part of the 
desktop system and managed by a startup manager.
 

�20



PERFORMANCE MONITORING

Linux has built-in tools that periodically extract data from usage logs recorded by the kernel and average the 
values to report on resource consumption.  In a multi-user system these reports are sufficient to identify a 
particular user process that is over using resources at the expense of others, however in a special purpose 
system with multiple CPU cores, the averaging approach may hide short peaks of usage that may be the main 
cause of contention problems.  Additional high sampling rate tools are useful.

Normally there are numerous system processes running in parallel with user processes.  The kernels 
scheduler module can’t wait for user processes to conclude before initiating system processes and uses a 
software technique called an interrupt.  The interrupt halts the process, stores all the data and program values 
currently in the CPU and initiates the system process.  When the system process is concluded the data and 
CPU values from the original process are reloaded and the process continues to run.   

A single user render engine can allocate render execution threads to as many cores as are available.  Even 
though the render engine has allocated threads to all available cores, the scheduler may still direct interrupts 
across all cores with resulting render performance hits.  The relationship between the scheduler and execution 
threads is referred to as affinity.  Performance monitoring tools are available to modify the affinity so some 
cores can be dedicated to the render process without being interrupted. 

Some end user applications, utilities, services and shell scripts are started automatically at boot-up by a 
desktop system launcher program.  The startup manager can be used to add, edit and delete auto-startups.  
CRON is a scheduler used to automate repetitive system admin tasks but may also be used by applications to 
do house-keeping tasks that free up resources.  Systemd is the primary module for controlling kernel services. 

HOST BUILD LIMITATIONS

Artist workstations require CPUs with multiple cores but also good single core performance as many modelling 
and sculpting workloads can only be performed on a single core.  Fast memory channels and multiple memory 
channels measurably improve performance.  While interactive performance is important a few minutes or even 
a couple of hours difference on a background render over several days may not be significant enough to 
warrant the cost of technologies that are designed for real time gaming experience with a risk of overheating.  
A host with a prolonged duty cycle is essential.

The electrical power used by a gaming PC can be in excess of a 400 Watts but a domestic power circuit is 
fused so it can supply limited continuous power without the risk of electrical fires.  Assuming the render farm 
has sole use of a fused power supply circuit, this still places a limit on power consumption of around 2.8kW to 
3.7 kW.   The objective is to run six render hosts plus one master host within this limit.  With a safety margin 
and scope to add a workstation and ancillary devices a render host will need to consume 400 Watts or less.  A 
high end GPU may use 200 Watts at maximum capacity so the CPU, memory and storage are limited to 200 
Watts or less.  Effort toward identifying the fastest devices with the lowest power consumption is not wasted in 
a domestic render farm.      

Given similar hardware capability the API used on a GPU can make a significant difference for certain render 
tasks.  Closed source device drivers have a performance advantage over reverse engineered open source 
equivalents.  Currently Ubuntu Linux is preferred as it supports a wide range of GPU technologies.  pop OS is 
an alternative with both Nvidia and AMD driver support. 

Stability, predictability and maintenance support is a factor for long running processes so Blender 2.83 LTS is 
preferred. 

�21



Part 2 - Hardware Build 

Local Area Network 

The heart of the network is an 8, 10 or 16 port Ethernet switch depending on the number of hosts.  The hosts 
need to be connected to the Internet for software installation but must be isolated from all external networks 
during operation however it is convenient if a workstation remains connected to the Internet via a modem/
router through a wifi link.   A power line extender is a practical means of locating the render farm at the best 
location and serving as an isolation control.  The second port on the extender could be used to connect a 4 
port switch to service workstation(s) and NAS, further reducing network traffic on the render host switch while 
maintaining network connectivity. Cat 6 cable is essential to maximum LAN speed.

�22



Host Builds 

The minimum facilities required for software installation and networked operation are specified.  Any additional 
facilities on motherboards such as WiFi and overclocking will not be utilised. 

Limiting Factors 

Apart from a $ budget that may be eased over time, the build is also subject to a Watt budget that will be 
difficult to increase.  The build assumes, and is limited to all the electrical power available from a domestic 
power circuit.  Depending of the power distribution it may be possible to utilise the power from two circuits 
however it is critically import to determine which circuits(s) will be used and what other appliances will be 
sharing them.  Avoid sharing kitchen, laundry and media room circuits and note that lighting is usually on the 
same circuit as general purpose outlets.   Calculate a realistic Watt budget to aid in making build decisions.         

Reliability 

Electronic components such are can run continuously when there is adequate cooling.   Power supplies with 
high efficiency ratings are more reliable under high load.   Motherboards with more voltage regulators and heat 
sinks are less likely to have power related problems.  Motherboards with high quality discrete components 
such as capacitors and resistors have longer usable lifetimes.   Protection from electrical supply spikes and 
surges will prevent processor outages, component destruction and increase useful lifetime of components. 

Flexibility 

The aim is for each host to both a multiple core CPU and a ray trace capable GPU.  All hosts need to be 
mounted in a cabinet with GPU external connectors readily accessible. An ATX micro size motherboard is a 
conveniently small form factor and sufficient for the required features.  Low profile GPU cards and cooling fans 
may allow more hosts per cabinet.  Beginning the construction with a cabinet in mind and choosing the 
components to suit may be unnecessarily restrictive.  A modular cabinet design that can be adjusted to 
accomodate the components after the fact, may be more flexible.  

Component Availability and Sourcing 

If funds are no obstacle there are sources of custom built machines using the latest components however if 
building on a budget there are some traps and that could waste limited funds.  High performance multi-core 
CPU’s have been available in the PC market only since late 2014 so anything older may disappoint.  Acquiring 
failed or questionable machines in the hope they can be repaired, may be a side track leading to a dead end.   

Markets with volume sales may be where to look.  The market for ex-corporate/government PCs is a source of 
inexpensive working machines that are suitable for a fileserver but all major components need to be replaced 
in order to build a practical render host.  There is a market for motherboards from these same machines and 
they can be acquired in numbers. It will be cost effective to acquire the components separately and assemble 
them into a working host.  Higher spec CPU’s, RAM, SSDs and GPUs are available from the same sources.  A 
source of new components is the market for current generation -1 components.  Retailers with stocks of 
superseded components often sell them in volume at discounted prices.  Though more expensive than ex-
corporate components they can have the advantage of offering a CPU upgrade path not available in the older 
motherboards. 

If funds are very tight it is feasible to omit the GPUs and use only CPU rendering.  GPUs can be installed over 
time as funds become available.  There is not a great difference in cost between a 300 Watt power supply and 
a 500 Watt supply so it is recommended to acquire the power supplies as specified.  The specified Wattage is 
calculated to cater for the initial build, later upgrades to CPU and/or GPU and remain within the Watt budget.                                     

�23



Master Host Minimum Build  

Motherboard - designed for continuous operation over extended period with support for at least 16 Gb of RAM, 
a PCI 2 x16 extension slot or better, at least 1 SATA 3 memory channel, 1 on board M.2 SSD slot or better, 3 
USB channels and an Ethernet channel.  Wifi is not required and can be omitted.  
  
Power supply - a minimum of 300 Watts with 24 split 8, split PCI and Sata outputs for flexibility. 
  
CPU - multiple cores with higher than average L1 and L2 memory.  Minimum of 4 cores/8 threads at the top of 
the performance range.  Over or high rated cooler fan. 

RAM - minimum of 16 Gb as recommended by motherboard manufacturer. 

OS/Application - 250 Gb SATA 3 external SSD. 

GPU - minimum OpenGL 4.2 support,  minimum 2 Gb on board RAM, DVI and HDMI output. - Geforce GT 710 
or equivalent.    

Render Host Minimum Build 

Motherboard - designed for continuous operation over extended period with support for at least 32 Gb of RAM, 
a PCI 2 x16 extension slot or better, at least 1 SATA 3 memory channel, 1 on board M.2 SSD slot or better, 3 
USB channels and an Ethernet channel.  Wifi is not required and can be omitted. 

Power supply - a minimum of 500 Watts with 24 split 8, split PCI and Sata outputs for flexibility. 

CPU - multiple cores with higher than average L1 and L2 memory.  Minimum of 4 cores/8 threads at the top of 
the performance range or 6 cores/12 threads at the middle of the performance range.  Over or high rated 
cooler fan. 

RAM - minimum of 12 Gb as recommended by motherboard manufacturer. 

OS Storage - 250 Gb SATA 3 external SSD or 125 Gb on board M.2 SSD. 

Application Storage - 125 Gb on board NVMe or M.2 SSD. 

GPU - minimum OpenGL 4.2 support,  minimum 2 Gb on board RAM, minimum 900 CUDA cores preferably 
1500 CUDA cores, DVI and HDMI output. - GTX 1650/1660 or  equivalent.   

Fileserver Host 

Motherboard - designed for continuous operation over extended period with support for at least 8 Gb of RAM, 
at least 4 SATA 3 connectors, 3 USB channels and an Ethernet channel.  Wifi is not required and can be 
omitted.  PCI slot optional.

CPU - Minimum of 2 cores/2 threads.  Over or high rated cooler fan.

RAM - minimum of 4 Gb as recommended by motherboard manufacturer.

OS Storage - 125 Gb SATA 3  external SSD.

Archive Storage - 1 Tb SATA 3 HDD.

Onboard or integrated graphics.  Low end graphics card optional.

�24



Note: Fileserver may be a suitable used small form factor (SFF) PC.

Peripherals 

A basic USB keyboard and mouse and an inexpensive, small (around 21.5 in) full HD monitor to share among 
hosts during software installation and dedicate to the master host during farm operation.

Note: The software solution will include a remote desktop utility to access all hosts during operation but so the 
animation workstation(s) is not interrupted by farm operation, the master host will need basic peripherals.  

Cabinet

A simple design to accomodate 7 hosts and network switch is a hollow case with removable platforms on which 
the hosts are mounted.  Indicative panel sizes are calculated based on the dimensions of a ATX micro 
motherboard, 500 Watt PSU and low profile fan CPU cooler.  Oil coolers will require an additional 20mm (7/8in) 
case hight per host.  

(from hardware shop) 
Panels made from 16mm (11/16in) particle board
8 x host platform size 455mm x 350mm (18 in x 13 3/4 in)
2 x case side  1400mm x 500mm (57 1/4in x  19 11/16in)
2 x case top and bottom  500mm x 390mm (19 11/16in x15in)
12 x 30 mm (1 1/4in) countersunk Phillips drive particle board screws
100 16 mm (9/16in) 6g pan head self tap screws
100 12mm (7/16in) 4g countersunk Phillips drive timbre screws
15 L shaped mending plates to suit particle board (for case corners and backstop)
50 metal reinforcing brackets 90 degree to support host panels
all purpose glue
4 x castors
spray paint and plastic corner mould (if desired)
(from electronics shop)
50 10 mm (6/16in) untaped nylon motherboard spacers
7 x LEDS, power-on switch and header wiring if needed
(cut from small plastic chopping board or milk container) 
miscellaneous plastic mounting strips to secure external drives and PSU    

For each host make a 16mm particle board platform to hold all the components.  Arrange host components 
with:

-PSU mounted securely to the rear flush with rear edge of panel
-motherboard secured to the front-left with spacers and self tap screws, connectors facing out with leading 
edge of ATX motherboard 425mm (16 3/4in) from rear edge of panel
-external storage mounted to right side of the motherboard

Construct a tally plate for the power-on switch and indicator LEDS out of a metal reinforcing bracket and mount 
on the front-right on the leading edge of the platform away from the motherboard and GPU connections.

Make a same size platform for mounting the Ethernet switch and ancillary equipment.  Securely Mount the 
switch on the front right edge and 10 way surge protected power board along the left rear side.  Position power 
monitor and smoke alarm.

�25



Complete all PSU, storage and tally plate connections and bench test each host to power-on.

Make a hollow case of four particle board panels cut to the required height, depth and width.  But side panels 
to top and bottom panels, clamp (e.g. picture frame clamps)  and make rigid with particle board screws, glue 
and L shaped mending plates.   Mount on sturdy castors.

In the interior of the case, both sides front and rear, measure off 4 host spaces (180mm) from the bottom and 
rule a line from front to rear a a guide for to positioning mounting brackets.  Measure off the switch space 
(135mm) and rule positing lines.  Measure off and rule guideline for remaining three host paces.   Screw on six 
brackets, both sides front middle and rear, for each platform using timbre screws.

Carefully insert all host platforms and switch platform into the case.

Install L shaped mending plates on one side at the rear to act as a stop for each host platform. 

Connect all PSU and LAN switch to power board.

Connect all hosts, workstation and power line extender to LAN switch with cat 6 patch cables.

The resulting cabinet is open at the front and rear to maximise airflow but exposes the electronics.  If desired a 
plastic mesh screen can be cut to fit, with cutouts for access to power switch and external connectors and 
mounted so it can easily be removed.                        

�26



Part 3 - Software Installation 

Conventions 

HOSTNAME, USERNAME AND GROUPNAME CONVENTIONS 

Naming conventions are used for convenience.  Hosts that perform the same function are given a common 
name appended by a dash and a serial number.  The names used for a machine: 

- used by an artists/animators is referred to as workstation, 
- that provides file sharing and control is referred to as master, 
- that is dedicated to performing render tasks is referred to as render, and 
- that stores archived files and animation resources is referred to as fileserver. 

Each workstation has normal logins independently of the render-farm.  Each machine in the render-farm has 
an administrators account and a user account.  The administrator account is used to manage the machine and 
the user account is used to perform render-farm functions.  The administrators name and password are chosen 
by the administrator.  The user name and password are as follows: 

- master host: username = master, password = master 
- render host:  username = tracer, password = tracer 
- fileserver host: username = filer, password = filer 

All machines, including the workstations must be in the workgroup “RENDERFARM” 

All actions that need to be taken to perform task, whether entering a command at the command prompt or 
entering settings via a GUI are numbered in the order they must be performed.  

Commands that are to be entered verbatim are printed in mono type so spaces can be discerned.  The 
command prompt (either $ for user login or # for root login) is included before a verbatum command.  When 
multiple machines use the same installation, some commands include a hostname with a numerical suffix.  
Rather than repeat all hostnames an ‘x’ is used to indicate a number sequence, e.g. render-x stands for 
render-1, render-2 etc and master-x stands for master-1 etc.  Some commands apply to both render login and 
master login.   Rather than repeat the command ‘master or render’ is used.  Enter only the host login that is 
relevant at the time. 

When it is more convenient to place comments on the same line as a command, a ‘#’ is used in case the 
comment is inadvertently copied along with the command. 

Contingencies 

In addition to the main render farm hosts, disused laptops may be put back into service as platforms for 
familiarising master host and render host software installation steps and subsequently used as a backup 
master host or for trialing performance optimisation options.  A laptop may also be useful to test including an 
external Windows machine into the workgroup. 

Helpful Hints 

Using the command line requires letter perfect accuracy.  There are many shortcuts however using the up and 
down arrows to recall previously used commands is extremely useful.  Copying this instruction to the host 
desktop and cutting and pasting commands and settings is often possible.  

�27



Gateway/modem Configuration 

Modem/Router Info 

Model: Telstra Smartmodem 

Network Name:  E86569 

Host name: mymodem 

Local IP Address: 192.168.0.1 

Net mask: 255.255.255.0 

DHCP Address: 192.168.0.0 

DHCP Start: 192.168.0.2 

DHCP End: 192.168.0.254 

DLNA Sever enabled. 

RESERVE STATIC IP ADDRESSES 

  
1 - Access Gateway/modem settings from browser at  http://192.168.0.1/home.lp  

2 - Add new static leases under Advanced tab - Local Network dialog Software Installation and Customisation 
Guide  

Hostname MAC Address (Ethernet) Static IP Address

workstation-1 tba 192.186.0.200

master-1 tba 192.186.0.201

render-1 tba 192.168.0.202

render-2 tba 192.186.0.203

render-3 tba 192.168.0.204

render-4 tba 192.168.0.205

render-5 tba 192.168.0.206

render-6 tba 192.168.0.207

fileserver-1 tba 192.168.0.250

�28



Workstation Configuration 

The following example is for a MAC with OSX. 

Configure Static IP Address 

1 - Open System Preferences -> Network 

 Highlight Ethernet (from connection options) 
 Select Configure IPv4: Manually 
 Enter IP Address: 192.168.0.200 
 Enter Subnet Mask: 255.255.255.0 
 Enter Router: 192.168.0.1 
 Close 

Obtain Ethernet Mac Address 

The MAC address is used in several communication processes however it is needed later in the installation to 
record a static IP lease on the Gateway/Router. 

2 - Open System Preferences -> Network 

 Highlight Ethernet 
 Click Advanced 
 Click Hardware 
 Close 

Add VNC User Group 

3 - Add user group for VNC access - Open System Preferences -> Users & Groups. 

 Click padlock icon open 
 Enter ‘admin password’ 
 Click + (to add new group in dropdown dialog) 
 Select New Account: Group 
 Enter Full Name: render 
 Click Create Group (check group appears under Group arrow) 
 Click padlock icon closed 
 Close 
   
Enable VNC Client/Viewer 

4 - Open System Preferences -> Sharing. 

 Check Screen Sharing 
 Click Computer Settings 
 Check VNC viewers may control screen with password: 
 Enter password ‘render’ 
 Check Allow access for: Only these users: 
 Click + (to add new group from dropdown dialog) 
 Select render 
 Close 

�29



Set Hostname 

5 - workstation-1 

Set Group Name 

6 - RENDERFARM 

�30



Windows 7 Laptop Configuration 

A Windows laptop may be useful as a contingency and testing. 

CONFIGURE HOSTNAME, STATIC IP ADDRESS AND INSTALL TIGHTVNC VNC SERVER 

1 - Configure contingency laptop as Hostname laptop1 

2 - Configure allocated static IP address 

3 - Download the TightVNC version compatible with host OS 

4 - Install TightVNC on master-01 

5 - Test Hostname, IP address and VNC server 

OBTAIN MAC ADDRESS 

The MAC address is used in several communication processes however it is needed later in the installation to 
record a static IP lease on the Gateway/Router. 

1 - Obtain MAC address 

�31



Linux Master and Render Host Configuration   

DOWNLOAD ISO IMAGE 

Ubuntu has several versions ranging from a server version a, studio version for animators and artists (including 
Blender), standard Gnome desktop version to a light weight version Lubuntu.  Ubuntu Mate 20.04 will be used 
as the standard OS.   

1 - Download Ubuntu  Mate 20.04 iso file from the Ubuntu to an available Windows or Mac host.  
    
DOWNLOAD BELENA ETCHER MEDIA WRITER 

The Etcher media writer can used to create a USB boot media from a Windows or Mac platform.  The media 
can be used to boot a Windows or Mac host with Linux and/or install Linux over the current OS.  Other media 
writers may also work. 

1 - Download Etcher media writer to host and install. 

PREPARE BOOT USB     

1 - Insert a USB Thumb-drive labeled as ‘Ubuntu “version” 20.4 Boot USB’ 

2 - Run the media writer and select the Ubuntu iso file to write to USB. 

Note1:  Take care to select the USB and not the host hard drive as the target. 

3 - Wait for image to be written to USB and eject 

Note: The USB Thumb-drive will be formatted for Linux ext4 file system and will not be 
readable on Mac or Windows however Linus can read FAT32 and NTFS formats.  
  
The USB can now be used to Live boot any PC with Linux and then optionally install it. Host Configuration 

�32



INSTALL UBUNTU MATE 20.04 

Install Ubuntu on hosts SSD drive: 

Preliminary to installing the OS the host BIOS has to be configured to use a USB device as the default boot 
media.  This is achieved by inserting a boot USB and restarting the machine while holding down the delete key 
or other function key used for the purpose.  When the bios editor appears select Boot devices tab, Boot 
settings, Hard drives and promote the USB device to the 1st boot position by using the + key.  Save and exit 
(F10) and wait for boot process. 

1 - Connect machine to LAN switch and ensure the Gateway is accessible 

2 - Insert the boot USB, power on the host and wait for Ubuntu to load. 

3 - Select English as the language then double click the Install Lubuntu icon. 

4 - Wait for ‘Welcome’ page - click Next at bottom of screen to enter preferences. 

select install Ubuntu 20.04 Mate 
select minimal installation, download updates, install additional graphics  
select erase disk  
set time zone - click on Sydney 
enter user information 
 Your full name: administrators name 
 Name of computer: render-x, master-x,  fileserver-x  
 User name: administrators login name 
 Password: administrators password 
 Note. Don’t select the Login automatically button for admin user 
 Finish - continue. (will take several minutes) 

5 - Restart and remove USB boot media when prompted 

6 - Wait for boot from SSD to complete and login 

7 - $ sudo apt update       # essential to update packages before proceeding  

8 - Uncheck Open welcome screen 

Post install commands useful to check devices, modules and drivers (ls commands): 

  $ lspci               # shows pci, usb, SATA, SMB, IDE, Audio, Ethernet, VGA etc 

  $ lsblk                # shows storage mounts and RAM  

  $ lscpu                # shows details of cpu 

Commands useful to check system status and performance and individual processes: 

  $ sudo systemctl status   # shows state of system 

  $ df -h                 # shows disk space rounded 

�33



  $ free -m                  # shows installed memory and usage in Mbytes 

  $ uptime                    # shows number users and load average for last 1, 5, 15 min 

  $ top                          # shows users and their resource consumption in real time, top user indicated 

  $ sudo ps -a                                                           # list current active processes 

  $ sudo ps -aux                                                       # list recent history of processes 

  $ cat /proc/<pid>/status                                   # shows detailed information 

  $ ps -ef | grep <pid> | grep -v “grep”   # shows details of a process 

  $ kill -9 <pid>    # *** forces termination of process with potential data loss 

  $ systemctl —type=service                                 # lists all loaded services 

  $ systemctl status <logfile>                        # shows status of a log file in /var/log/ 

  
CHECK UBUNTU 20.04 LTS IS INSTALLED 

A Long Term Support (LTS) version is needed for stability. 

1 - $ lsb_release -a 

CHECK DETAILS OF GRAPHICS CARD AND DRIVER VERSION 

1 - $ sudo lshw -class display 

2 - Menu -> Control Center -> Hardware -> Additional Drivers  

INSTALL NET-TOOLS 

Net-tools are depreciated on Lubuntu in favour of iproute2 but they are often used in tutorials needed to 
manage IP addresses and other communications. 

1 - Ensure there is an active Internet connection 

2 -   $ sudo apt install net-tools 

3 - Wait for package download and installation 
   
CHECK HOSTNAME 

Some operations of the render farm need to identify each host by a unique hostname.  The hostname identifies 
a host operating system, whereas a MAC address identifies a particular NIC (different for Ethernet and WIFI).  
Enter the following.  

1 -  $ hostname 

If Hostname is incorrect, set it by: 

�34



2 - $ sudo hostnamectl set-hostname render-x or tracer-x 

3 - $ ifconfig -a    # confirm new Hostname 

OBTAIN ETHERNET MAC ADDRESS 

The MAC address is needed register a static IP address with the Gateway/router.  To display only the ethernet 
MAC address. 

1 -  $ ifconfig | grep ether 

SET STATIC IP LAN ADDRESS AND GATEWAY ADDRESS 

Preliminary to setting static IP addresses a range of available IP addresses from the top half of the 
subnet space has to be identified and allocated to each host.     On a small network it is usually safe 
to allocate static address beginning at 192.168.0.200. 

To set a static IP address: 

1 - $ ifconfig -a    # display and note current IP and ethernet device name 

2 - Menu -> Preferences -> Advanced Network Configuration 

3 - Under Ethernet, highlight active service eg. Wired Connection 1 
 and click cog icon at bottom of dialog box to edit settings  

4 - Ensure the ethernet device name is as noted and click IPv4 Settings 

Change Method to Manual 
Click Add Address 
Enter Address e.g. 192.168.0.20x      (as allocated on Gateway) 
Enter Subnet mask e.g. 255.255.255.0 
Enter Gateway e.g.192.168.0.1 
Enter DNS Servers e.g. 192.168.0.1 
Click Save 

5 - Reboot 

6 - $ ifconfig -a or $ ip addr show  # display and check new settings 
  
7 - $ ping 192.168.0.1   #  check connection with Gateway/modem 

�35



INSTALL LIGHTDM 

LightDM is a display manager that works with the X11 authentication required for x11 vnc remote 
access.  A gdm3 or sddm display manager will not work.  If prompted, select lightdm. 

1 -  $ sudo apt-get install lightdm 

INSTALL VNC SERVER 

VNC is a remote desktop connection.  It will be used to access to hosts from a central point and reduce the 
need for individual video monitors on all machines.  Screen locking must be disabled to prevent interference 
with vnc communication. 

1 - Deactivate screen locking 

Menu -> Control Center -> Power Management -> OnAC Power 
Actions..never, Display…never 

Menu -> Control Center -> Screensaver 
uncheck Activate screensaver and Lock screen 

2 - $ sudo apt update    # only necessary if update was not done during installation  

3 - $ sudo apt install x11vnc 

4 - $ sudo nano /lib/systemd/system/x11vnc.service 

[Unit] 
Description=x11vnc service 
After=display-manager.service network.target syslog.target 

[Service] 
Type=simple 
ExecStart=/usr/bin/x11vnc -forever -display :0 -auth guess -passwd RENDERFARM  
-geometry 1024x768 
ExecStop=/usr/bin/killall x11vnc 
Restart=on-failure 

[Install] 
WantedBy=multi-user.target 

Save with ctl x, y (save and exit) 

5 - $ systemctl daemon-reload 

6 - $ systemctl enable x11vnc.service 

7-  $ systemctl start x11vnc.service 

8 - $ systemctl status x11vnc.service 

9 - $ reboot 

�36



10 - $ systemctl status x11vnc.service    # check vnc service started at boot 

INSTALL ETHTOOL 

Optimal performance of the render farm requires all machines transmit/receive data at the maximum possible.  
Ethtool is a useful monitoring tool that provides details of ethernet transmissions. 

1 - $ sudo apt-get install ethtool      

CHECK LAN COMMUNICATION SPEED 

If all machines in the render farm are connected via a Gigabyte switch, each machine should be operating at 
the maximum 1000 Mb/s in full duplex mode. 

1 - $ ifconfig         # obtain ethernet device name e.g. enp2s0 or eth0 

2 - $ dmesg | grep <ethernet device name>    # list status and speed 

3 - $ ethtool <ethernet device name>               # lists details of ethernet connection 

INSTALL PERFORMANCE MONITORING TOOLS 

Linux has built-in system calls that can be used by performance monitoring tools.  
RAM and cache are the main targets and some tools are installed by default including Top.  Other useful tools 
need to be installed: 

1 -  $ sudo apt install sysstat     # includes iostat, vmstat, pidstst, mpstat and sar 

Note: Sysstat is available but the repository may not be configured in Software and Upgrades.  Check 
Preferences -> Software Upgrades and ensure all 4 options are checked. 

2 - $ sudo apt-get install htop 

3 - $ sudo apt-get install nmon 

4 - $ sudo apt-get install dstat 

For hosts with NVIDIA GPU 

5 - $ sudo apt install nvidia-utils-460 

6 - $ sudo ubuntu-drivers devices          # list will show recommeded driver 

7 - $ sudo ubuntu-drivers install 

8 - $ sudo reboot 

9 - $ nvidia-smi 

10 - $ sudo apt install nvtop 

�37



COMPILE AND INSTALL PRECISION MONITORING TOOLS 

Monitoring tools that access data more frequently and with high precision need to be compiled into the kernel 
by an administrator.  Warning.  CoreFreq may not be compatible with all hardware.  Given the same version of 
Ubuntu it may install into the kernel for some hardware but hang on others during the insmod operation.  If this 
happens restore the grub file settings then a manual reboot will be necessary and the benefits of the tool 
foregone. 

CoreFreq 

1 - Disable NMI watchdog by editing grub file 

$ sudo nano /etc/default/grub 

…. 
GRUB_CMDLINE_LINUX=“nmi_watchdog=0” 

ctl x, y    # save file 

$ sudo update-grub 

$ reboot    # reboot to admin 

2 - Install CoreFreq 

$ sudo apt-get install git dkms build-essential libc6-dev libpthread-stubs0-dev 

$ sudo git clone https://github.com/cyring/CoreFreq.git 

$ cd CoreFreq 
  
 $ sudo make 

3 - Install the kernel module 

$ sudo insmod corefreqk.ko 

$ lsmod | grep corefreq  # reports if CoreFreq is installed 

$ sudo dmesg | grep CoreFreq   # reports if recognised by the processor 

When needed, start the module, 

$ sudo ./corefreqd -i & 

and then the client 

$ ./corefreq-cli 

  

�38

https://github.com/cyring/CoreFreq.git


CREATE NON-ADMIN USER 

A non-admin user is needed for render farm operations and an auto-login and the user needs to be 
added to the RENDERFARM workgroup.  

1 - $ sudo adduser master or tracer   

full name: master or tracer 
password: master or tracer   # typing will not show, but then enter  

Note.  Leave other user info as null 

2 - $ sudo groupadd RENDERFARM   # add a user 

3 - $ sudo usermod -a -G RENDERFARM master or tracer  #add user to group 

4 - $ users  # lists all users - also use cat /etc/passwd for system users 

5 - $ groups master or tracer   # lists groups user is in - also use $ id <username>     

ENABLE AUTO-LOGIN FOR NON-ADMIN USER  

Auto-login is needed for render farm remote access and automation.  The auto login is executed for the user 
specified in lightdm.conf.  

  1 - $ cat /etc/X11/default-display-manager   # check that display manager is lightdm 

  2 - $ sudo nano /etc/lightdm/lightdm.conf   #open for editing - may be new file 
  
[Seat:*] 
autologin-user=master or tracer      
autologin-user-timeout=0 
  
ctl x, y    # save and exit 

3 - reboot and ensure automatic login to master of render user 

4 - Deactivate screen locking 

Menu -> Control Center -> Power Management -> OnAC Power 
Actions..never, Display…never 

Menu -> Control Center -> Screensaver 
uncheck Activate screensaver and Lock screen 

5 - From another machine with a vnc client, check vnc is operating for render 
  
Note.  To access administrator account, logout from render and login as admin. 

�39



CREATE HOSTS FILE  

On the Internet IP addresses and host names are found using a Domain Name Service (DNS). As there is no 
DNS on a LAN, a Hosts file is an alternative means of retrieving IP addresses and host names. 

Switch to admin user. 

1 - $ cd /etc 

2 - $ sudo nano hosts 

3 - Add entries for all machines on render farm 

192.168.0.200     workstation-1 
192.168.0.201     master-1 
192.168.0.202     tracer-1 
192.168.0.203     tracer-2 
192.168.0.204     tracer-3 
192.168.0.205     tracer-4 
192.168.0.206     tracer-5 
192.168.0.207     tracer-6  
192.168.0.250     fileserver-1 

ctl x 

4 - $ cat hosts 

5 - $ reboot 

�40



Master Host Only 

INSTALL SAMBA 

Samba is an Open Source implementation of the Server Message Blocks file-sharing protocol. 

1 - $ sudo apt install samba 

2 - $ sudo systemctl status smbd 

Create Shared Samba Configuration and Shared Directories

The Samba configuration file is used to define shared directories for network operation, including drop-box 
directory, render input directories (render), render output directories (render_images), a video output directory 
and a pick-up directory.  Separate render, images and video directories are created for production and test.  
The render output directories are sub-directories of the input directories so they can be located using a relative 
path.  A naming convention is to ensure uniqueness within the user.
 
Create directories to be shared or used for workflow 

Login as master user (share directories to be created under master home directory)

1 - $ cd /home/master               2 - $ mkdir prod 

3 - $ mkdir prod/prod_render        4 - $ mkdir prod/prod_render/prod_images 

5 - $ mkdir prod/prod_video         6 - $ mkdir test 

7 - $ mkdir test/test_render        8 - $ mkdir test/test_render/test_images 

9 - $ mkdir test/test_video         10 - $ mkdir render_bin 
             
11 - $ mkdir staging                12 - $ mkdir compositing 

13 - $ mkdir compositing/presets    14 - $ mkdir drop_box                

15 - $ mkdir pickup_box             15 - $ mkdir job_tickets             

16 - $ mkdir scheduling             17 - $ mkdir for_archive 

18 - Delete unused standard install directories i.e. Videos, Documents, Templates…   

�41



Create Samba Configuration File 

Login as master admin 

1 - cd /etc/samba 

2 - $ sudo mv smb.conf smb.conf.bak    # wont use original conf - take a backup 

3 - $ sudo nano smb.conf   # create a conf file from scratch 

[global] 
server string = master-1 host 
server role = standalone server 
wins support = yes 
name resolve order = host wins bcast  
workgroup = RENDERFARM 
security = user 
map to guest = Bad User 
usershare allow guests = yes  
hosts allow = 192.168.0.0/16 
hosts deny = 0.0.0.0/0  

#Share for all render hosts to read production animation file 
[prod_render] 
path =  /home/master/prod/prod_render                           
force user = smbuser                                      
force group = smbgroup                                 
create mask = 0664                                      
force create mode = 0664                             
directory mask = 0775                                  
force directory mode = 0775                          
public = yes               
writable = yes               

#Share for all render hosts to read test animation file 
[test_render] 
path =  /home/master/test/test_render                           
force user = smbuser                                      
force group = smbgroup                                 
create mask = 0664                                      
force create mode = 0664                             
directory mask = 0775                                  
force directory mode = 0775                          
public = yes               
writable = yes               

# Share for all render hosts to write production rendered images 
[prod_render_images] 
path = /home/master/prod/prod_render/prod_images 
force user = smbuser 
force group = smbgroup 

�42



create mask = 0664 
force create mode = 0664 
directory mask = 0775 
force directory mode = 0775 
public = yes 
writeable = yes 
#read only = No 
#guest ok = Yes 
#write list = render-1 render-2 render-3 render-4 render-5 

# Share for all render hosts to write test rendered images 
[test_render_images] 
path = /home/master/test/test_render/test_images 
force user = smbuser 
force group = smbgroup 
create mask = 0664 
force create mode = 0664 
directory mask = 0775 
force directory mode = 0775 
public = yes 
writeable = yes 

# Share for compositing process to write production video 
[prod_video] 
path = /home/master/prod/prod_video 
force user = smbuser 
force group = smbgroup 
create mask = 0664 
force create mode = 0664 
directory mask = 0775 
force directory mode = 0775 
public = yes 
writeable = yes 
  
# Share for compositing process to write test video  
[test_video] 
path = /home/master/test/test_video 
force user = smbuser 
force group = smbgroup 
create mask = 0664 
force create mode = 0664 
directory mask = 0775 
force directory mode = 0775 
public = yes 
writeable = yes 

# Share for staging inputs  
[drop_box] 
path = /home/master/drop_box 
force user = smbuser 
force group = smbgroup 

�43



create mask = 0664 
force create mode = 0664 
directory mask = 0775 
force directory mode = 0775 
public = yes 
writeable = yes 

# Share for staging outputs  
[pickup_box] 
path = /home/master/pickup_box 
force user = smbuser 
force group = smbgroup 
create mask = 0664 
force create mode = 0664 
directory mask = 0775 
force directory mode = 0775 
public = yes 
writeable = yes 

ctl x 

4 - $ testparm   # test conf parameters are ok 

5 - $ sudo systemctl restart smbd 

Create user and group to apply permissions 

1 - $ sudo groupadd —system smbgroup 

2 - $ sudo useradd —system —no-create-home —group smbgroup -s /bin/false smbuser 

3 - $ cat /etc/group     4 - $ cat /etc/passwd               # check created ok 

Change shared directory permissions 

Login as admin, invoke superuser (sudo -i) and then change directory to /home/master

1 - # chown -R smbuser:smbgroup prod 

2 - # chmod -R g+w prod 

3 - # ls -l               4 - # ls -l prod                                # check permissions 

5 - # chown -R smbuser:smbgroup test 

6 - # chmod -R g+w test 

7 - # ls -l              8 - # ls -l test                                  # check permissions 

9 - # chown -R smbuser:smbgroup drop_box 

10 - # chmod -R g+w drop_box 

�44



11 - # ls -l            12 - # ls -l drop_box                      # check permissions 

13 - # chown -R smbuser:smbgroup pickup_box 

14 - # chmod -R g+w pickup_box 

15 - # ls -l           16 - # ls -l pick_up box                       # check permissions 

17 - # usermod -a -G smbgroup master       # give master user permits to delete files 

18 - # reboot 

Useful SAMBA Commands 

$ findsmb                                         # lists IP address, Netbios name and groupname 

$ nmblookup __SAMBA__                # lists IP address of all SAMBA servers on network 

$ nmblookup  -S __SAMBA__        #lists all SMB servers 

$ nmblookup  -S RENDERFARM     #lists all server members of a workgroup  

Check SSH Client is Installed 

The master host will request a connection to each render machine that will in turn respond to action the 
request.  In ssh terminology the master host is an ssh client and the render hosts are servers. 

SSH client should be installed with Ubuntu Mate.  Check the installation. 

Note: the command to install an ssh client from the admin logon is  

$ sudo apt install openssh-client 

1 - $ ssh -V 

Generate an Encryption Key Pair 

SSH has an option for a client to connect to a server without a login password by using encryption private/
public key pair.  The key pair is generated on the client and copied to a special ssh file on each server.  Login 
to master home directory. 

1 - $ ssh-keygen 

….Generating a public/private rsa key pair. 

Press enter to accept default file to save the key 

….Created directory ‘/home/master/.ssh/id_rsa’ 

Press enter to bypass passphrase (twice) 

….The key fingerprint is….. 
�45



2 - $ cd ssh 

3 - $ ls -lh  

4 - Copy the file id_rsa.pub  to a USB media directory ‘SSH’ for transfer to all render hosts. 

5 - On USB media, make a copy of id_rsa.pub and rename it to authorized_ keys 

Install VNC Client and SSH Client 

X11VNC server is installed but does not have a viewer so alternatives are TigerVNC viewer and vinagre 
remote desktop application.  Vinagre supports several connection protocols.  The clients will appear in the 
Internet tab on the desktop menu.   Login as admin.   
      
1 - $ sudo apt-get install -y tigervnc-viewer 

2 - $ sudo apt install vinagre 

Install LibraOffice and Pinta 

A spreadsheet,  database and image editor may be useful for managing operations.  

1 - $ sudo apt install install libreoffice 

1 - $ sudo apt-get install pinta 

�46



RENDER HOSTS ONLY

Install CIFS-Utils 

The CIFS utility is installed to support mounting s shared directory as part of the local file system. 

1 -  $ sudo apt-get install cifs-utils 

Mount the Render Input Shared Directories on the Local File System at Boot-up 

A permanent mount at boot-up requires a local directory to mount to, root username and password and an 
entry in the fstab file.  For security, the root username and password can be stored in a hidden file (begins 
with .)  The format of an fstab entry is: 

//<server IP>/<share name>   /<path to local directory> 
cifs   /<credentials>,<smb ver>,<format options>,<mode options> 0 0  

Login as render user and create a local directories for mounting. 

1 - $ mkdir prod_render 

2 - $ mkdir test_render 

3 - $ mkdir prod_render/prod_images 

4 - $ mkdir test_render/test_images 

5 - $ mkdir staging 

6 - Delete unused directories  

Switch user to admin 

Edit fstab file to create cifs mounts 

Note1: The username and password used are that of the administrator and could be 
easily discovered by non-admin users.  They can be hidden in a password file but are included in the cifs 
entries as it is the most reliable implementation. 
   
Note2: All cifs entries are on one line each but shown separated below for clarity. 

1 - $ cd /etc 

2 - $ sudo nano fstab 

# Shared directories 

//192.168.0.201/prod_render  /home/tracer/prod_render  
cifs  username=<admin>, password=<password>, 
vers=3.0,iocharset=utf8,file_mode=0777,dir_mode=0777 0 0 

//192.168.0.201/test_render   /home/tracer/test_render  
�47



cifs  username=<admin>,password=<password>, 
vers=3.0,iocharset=utf8,file_mode=0777,dir_mode=0777 0 0 

//192.168.0.201/prod_render_images    /home/tracer/prod_render/prod_images  
cifs   username=<admin>,password=<password>, 
vers=3.0,iocharset=utf8,file_mode=0777,dir_mode=0777 0 0 

//192.168.0.201/test_render_images    /home/tracer/test_render/test_images  
cifs   username=<admin>,password=<password> 
vers=3.0,iocharset=utf8,file_mode=0777,dir_mode=0777 0 0 

Test the mounts 

1 - $ sudo mount -a 

If any problems type: 

2 - $ dmesg 

Alternative hidden credentials file 

Login as admin and create credentials file 

1 - $ sudo nano .share_creds 

username=<admin name> 
password=<admin password> 

ctl x 

In all cifs entries, replace “username=<admin>,Password=<password>” with 
“credentials= /home/<admin>/.share_creds” 

Install Samba Client 

The smbclient is installed to support command line access to shared directories. 

1 - sudo apt install smbclient 

2 - $ reboot

�48



How to Access Shared Directories from From the Nautilus File Manger 

Click on Browse Network to display shared directories. 

How to Access Shared Directories From the Command Line 

$ smbclient //<IP address>/<sharename> -U <username>%<password> 

  smb: \> # smb prompt 
 smb: \>help 
 smb: \>exit 

Note: Use the IP address instead of the hostname (as shown in tutorials) as the is an apparent problem with 
resolving the hostname.  

How to Temporarily Mount a Shared Directory on the Local File System 

Create a local directory to mount to: 

1 - $ sudo mkdir /<full path>/<tmpshare> 

2 - $ sudo mount -t cifs //<shareserver IP>/<path to share>  /<path to tmpshare> -o 
username=user 

or 

$ mount -t cifs -o username=none,password=none //<servername>/<path to share> /
<path tmpshare> 

Alternative with uid and gid 

The uid and gid are used to determine what resources a user can access so 
there may be advantages to including the uid and gid of render in the mount. 
Find uid gid with 

$ whoami    # gives username 

$ id <username> 

For temporary mount 

$ mount -t  cifs -o username=<username>,password=<password>,uid=xx,gid=xx, 
rw,nounix,iocharset=utf8,file_mode=0777,dir_mode=0777 
 //192.168.1.201/<path to share>  /<path to temp> 

For permanent fstab entry 
  
//192.168.1.120/<path to share>   /<path to temp>       
 cifs    credentials=/<path to admin>/.smbcredentials,uid=33,gid=33, 
rw,nounix,iocharset=utf8,file_mode=0777,dir_mode=0777 

�49

https://www.server-world.info/en/command/html/mount.html


Test Network File Shares 

Test the following configurations and services: 

- all machines can auto boot to user 

- the master host mounts all shared directories 

- any workstation can access the drop box and pickup box shared directory 

- all render hosts can access the blend and images shared directories 

- master host and render host can be accessed via vnc 

Install SSH Server 

Each render host will be a ssh server to the master host ssh client. 

Login as admin. 

1 - $ sudo apt-get install openssh-server 

2 - $ sudo systemctl status ssh.service    # check ssh is running 

Login as render 
     
3 - $ ssh-keygen 

….Generating a public/private rsa key pair. 

Press enter to accept default file to save the key 

….Created directory ‘/home/master/.ssh/id_rsa’ 

Press enter to bypass passphrase (twice) 

….The key fingerprint is….. 

4 - Insert USB media with the authorized_keys file and copy it to the .ssh directory. 

Test SSH 

1 - Reboot master host and tracer hosts 

2 - Login to master-1 as master user 

3 - $ ssh tracer@<tracer ip> 

On the first connection a warning message appears.   Type ‘yes’, then a command prompt at tracer@render-x 
should appear.  Further connections will connect immediately. 

Note: Using the IP address is more reliable than hostname which may not resolve.  

�50



Blender Application Installation 

INSTALL BLENDER 2.83.4 

Blender can be installed from a zip file to install a specific version that may not be available from a repository.   
The standard directory for a locally installed application so it is accessible by any user is /usr/local/bin. 

Manually Install Blender on Master Host and All Render Hosts 

1 - Download the Blender zip file for Linux (e.g blender-2.83.4-linux.tar.xz) 

2 - Copy the zipped image file to a USB media formatted for FAT32 

3 - Login to the host as admin and then insert the USB media 

4 - Copy the tar file to /home and rename to blender.tar.xz. (use File Manager) 

5 - Move the tar file to /usr/local/bin (use command line - need admin permits) 

 $ sudo mv blender.tar.xz /usr/local/bin 

6 - Change to /usr/local/bin directory  

 $ cd /usr/local/bin  

7 - Extract all files to a blender folder (use command line - need admin permits) 

 $ sudo tar -xf blender.tar.xz 

8 - Check blender directory exists and rename to a shorter name 

 $ ls              # display current name   

 $ sudo mv blender-x.xx.x-linux64 blender283   # i.e. shorter but still has version 

 $ ls              # check new name 

9   Add blender to global PATH environment variable (recommended method) 

 $ cd /etc/profile.d                          # any .sh script found in this directory runs at login 

 $ sudo nano blender_path.sh         # create a script file to append blender path 

 export PATH=$PATH:/usr/local/bin/blenderxxx 

 ctl x, y   

10 - $ sudo reboot                                            # to non-admin user terminal 

11 - $ echo $PATH                                              # check to see blender has been appended to PATH 

12 - For each individual host, open Blender and set the Edit-> Preferences -> System -> Cycles Render Device 
       to support the GPU installed GPU, i.e. 'None', 'CUDA', 'Optix', 'OpenCL'.  (Very important)  

�51



TEST BLENDER INSTALLATION AND NETWORK OPERATION 

In preparation for initial tests:

- configure a workstation for VNC remote operation and access to RENDERFARM group
  shared directories (see above instructions) 

- prepare a simple animation with 5 frames.  Name it ‘5copy.blend’ and copy the file to a
 USB media labelled ‘Test Files’.  Ensure there are no leading spaces in the file name.

- open a test editor and write a shell script as follows:

#!/bin/bash 

# gorender.sh - Initiates background render session using shared directories                 

while getopts "i:o:" flag 
do 
    case "$flag" in 
        i) infile="$OPTARG";; 
        o) outfile="$OPTARG";; 
    esac 
done 
echo "Input file: $infile"; 
echo "Output file: $outfile"; 

cd ~ 
pwd 

exec blender -b ~/test_render/$infile -o //test_images/$outfile -a 

- save script as gorender.sh

- copy the shell script to a USB media under a directory ‘Render_scripts. Labeled the
  media ‘Render Farm Shell Scripts’

Create Directories for Local Blender Test on Master Host and All Render Host 

Logon as user.

1 - $ mkdir blender_in

2 - $ mkdir blender_in/blender_out

3 - $ mkdir render_test_files
   
Copy Test File to Host

1 - Copy the test file to ~/render_test.

�52



Test Blender Runs, Loads a File and Renders Images 

1 - $ cd ~ 

2 - $ blender                                                             #Blender should load with splash screen

3 - $ File ->Open ->blender_in ->5test.blend.             #Blender should load 5test.blend

4 - Set Properties

Render Properties

  Render Engine > Cycles
  Device > CPU

Output Properties

  Output location: /home/tracer/blender_in/blender_out/test_images

  File Format > JPEG

5 - Initiate render

Render ->Render Animation  (Blender should render 5 frames to blender_out)

6 - Close Blender

Clean Up

1 - Delete test images in blender_out  (directory must be empty for next test)

Test Blender Renders in Background Mode 

1 - $ blender -b  ~/blender_in/5test.blend  -o //blender_out/test_images -a 

Clean Up 

1 - Delete test images in blender_out

2 - Copy /blender_in/5test.blend to /blender_test_files  

�53



Create Directories for Network Render on All Render Hosts 

1 - $ mkdir render_bin

Install Render Shell Script on all Render Hosts 

1 - Copy gorender.sh to /render_bin

2 - $ chmod +x /render_bin/gorender.sh         # make shell script executable

Copy Test File to Master Shared Directory 

1 - Login the master host as master user 

2 - Copy the test file ‘5test.blend’ to the ~/test/test_render directory. 

Host Startup Sequence 

Ensure master host and all render hosts are shutdown as Samba and CIFS mounts won’t function properly if 
connected in the wrong sequence.  Using the master host and two render hosts are sufficient for the test. 

1 - Start the master host and wait until fully booted 

2 - Start render hosts and wait until fully booted. 

Initiate Render Process 

1 - Open VNC remote sessions to bother render hosts. (This may be done on the 
   workstation figured for VNC access.) 

Perform the following commands on both render hosts via VNC 

2 - Open a terminal session 

3 - $ cd render_bin 

4 - $ sh gorender.sh -i 5test.blend -o test_images#### 

5 - Observe the terminal output of Blender - each host should be rendering a frame 

6.- Wait until all 5 frames have been rendered and ‘Blender quit’ is output on terminals. 

7 - Using the file manager, open the test_blender/test_images directory on the master 

     Five rendered jpeg images should accumulate as the render proceeds. 

At this point there should be a functioning render farm. 

Clean Up 

1 - Delete all images files from the master test_images directory. 

2 Close VNC sessions                3 Shutdown hosts 
    

�54



Render Process Automation 

Shell scripts and Python scripts need to be coded for each automation model and and installed on the hosts. 

AUTOMATION SCRIPT INSTALLATION SCHEDULE

Scripts   Installed Machines   Directory 

Preprosessing 

fa.sh   master host    home/master/render_bin 

set_fa.py  master host    home/master/render_bin 

hiq_rp.sh  master host    home/master/render_bin 

set_hiq_rp.py  master host    home/master/render_bin 

frt_rp.sh  master host    home/master/render_bin 

set_frt_rp.py  master host    home/master/render_bin 

gpu_rp.sh  master host    home/master/render_bin 

set_gpu_rp.py  master host    home/master/render_bin 

cpu_rp.sh  master host    home/master/render_bin 

set_cpu_rp.py  master host    home/master/render_bin 

Model 1 Render 

prod_ren.sh  all render hosts   home/render/render_bin 

test_ren.sh   all render hosts   home/render/render_bin 

set_ren_fa.py  all render hosts   home/render/render_bin 

Model 2 Render             

cpu_prod_ren.sh all render hosts   home/render/render_bin 
     
cpu_test_ren.sh  all render hosts   home/render/render_bin 

alloc_cpu_rt.py all render hosts   home/render/render_bin 

�55



SCRIPT CODE 

fa.sh 

#!/bin/bash 

# fa.sh - Runs Python script to set critical Overwite and Placeholder properties 
render properties  

helpFunction() 
{ 
   echo "" 
   echo "Usage: $0 -i Input-file" 
   echo -e "\t-i Name of animation file including the file extension" 
   exit 1 # Exit script after printing help 
} 

while getopts "i:" opt 
do 
   case "$opt" in 
       i) infile="$OPTARG" ;;  
   esac 
done 

# Print helpFunction in case parameters are empty 
if [ -z "$infile" ] 
then 
   echo "Missing arguement or dash"; 
   helpFunction 
fi 

# Begin script in case all parameters are correct 
echo "Render job with..." 
echo "\tInput animation file: $infile" 
echo "Initiate from..." 
cd ~ 
pwd 
start_time=$(date +"%c") 
echo "Started at: $start_time" 

# Blender background mode command line 

exec blender -b ~/staging/$infile -P ~/render_bin/set_fa.py 

�56



set_fa.py 

################################################################ 
#  set_fa.py  - set sets critical Overwrite and Placeholder render properties 
#    opens .blend file 
#    sets Overwrite to False and Placeholder to True render properties   
#    saves .blend file with settings 
################################################################    

import bpy 

# get the name of this .blend file 

infile=bpy.path.basename(bpy.context.blend_data.filepath) 

# check if images are packed in 

# set global output properties for all scenes in infile 

def set_fa() : 

    for scene in bpy.data.scenes: 
        scene.render.use_overwrite = False 
        scene.render.use_placeholder = True 
         
    return 

set_fa() 

# save infile with essential settings 

bpy.ops.wm.save_as_mainfile(filepath="/home/master/staging/" + infile) 

�57



hiq_rp.sh 

#!/bin/bash 

# hiq_rp.sh - Runs Python script to set high image quality render properties  

helpFunction() 
{ 
   echo "" 
   echo "Usage: $0 -i Input-file" 
   echo "\t-i Name of animation file including the file extension" 
   exit 1 # Exit script after printing help 
} 

while getopts "i:" opt 
do 
   case "$opt" in 
       i) infile="$OPTARG" ;;  
   esac 
done 

# Print helpFunction in case parameters are empty 
if [ -z "$infile" ] 
then 
   echo "Missing arguement or dash"; 
   helpFunction 
fi 

# Begin script in case all parameters are correct 
echo "Render job with..." 
echo -e "\tInput animation file: $infile" 
echo "Initiate from..." 
cd ~ 
pwd 
start_time=$(date +"%c") 
echo "Started at: $start_time" 

# Blender background mode command line 

exec blender -b ~/staging/$infile -P ~/render_bin/set_hiq_rp.py 

�58



set_hiq_rp.py 

################################################################ 
#  set_hiq_rp.py  - set high image quality render properties 
#    opens .blend file 
#    sets standard render properties   
#    saves .blend file with settings 
################################################################    

import bpy 

# get the name of this .blend file 

infile=bpy.path.basename(bpy.context.blend_data.filepath) 

# check if images are packed in 

# set global output properties for all scenes in infile 

def set_fa() : 

    for scene in bpy.data.scenes: 
        scene.render.use_overwrite = False 
        scene.render.use_placeholder = True 
         
    return 

# declare standard production render property values and 
# set global output properties for all scenes in infile 

def set_hiq_rp() : 

    res_x = 1920 
    res_y = 1080 
    percent = 100 
    aspect_x = 1 
    aspect_y = 1 
     

    for scene in bpy.data.scenes: 
        scene.render.resolution_x = res_x 
        scene.render.resolution_y = res_y 
        scene.render.resolution_percentage = percent 
        scene.render.pixel_aspect_x = aspect_x 
        scene.render.pixel_aspect_y = aspect_y 
         
    return 
     
set_fa() 
set_hiq_rp() 

�59



# save infile with standard settings 

outfile = "h_" + infile 
bpy.ops.wm.save_as_mainfile(filepath="/home/master/staging/" + outfile) 

�60



frt_rp.sh 

#!/bin/bash 

# frt_rp.sh - Runs Python script to set fastest render time render properties  

helpFunction() 
{ 
   echo "" 
   echo "Usage: $0 -i Input-file" 
   echo "\t-i Name of animation file including the file extension" 
   exit 1 # Exit script after printing help 
} 

while getopts "i:" opt 
do 
   case "$opt" in 
       i) infile="$OPTARG" ;;  
   esac 
done 

# Print helpFunction in case parameters are empty 
if [ -z "$infile" ] 
then 
   echo "Missing arguement or dash"; 
   helpFunction 
fi 

# Begin script in case all parameters are correct 
echo "Render job with..." 
echo "\tInput animation file: $infile" 
echo "Initiate from..." 
cd ~ 
pwd 
start_time=$(date +"%c") 
echo "Started at: $start_time" 

# Blender background mode command line 

exec blender -b ~/staging/$infile -P ~/render_bin/set_frt_rp.py 

�61



set_frt_rp.py 

################################################################ 
#  set_frt_rp.py  - set fast render time render properties 
#    opens .blend file 
#    sets standard render properties   
#    saves .blend file with settings 
# 
################################################################    

import bpy 

# get the name of this .blend file 

infile=bpy.path.basename(bpy.context.blend_data.filepath) 

# check if images are packed in 

# set global output properties for all scenes in infile 

def set_fa() : 

    for scene in bpy.data.scenes: 
        scene.render.use_overwrite = False 
        scene.render.use_placeholder = True 
         
    return 

# declare standard production render property values and 
# set global output properties for all scenes in infile 

def set_frt_rp() : 

    res_x = 1280 
    res_y = 720 
    percent = 90 
    aspect_x = 1 
    aspect_y = 1 

    for scene in bpy.data.scenes: 
        scene.render.resolution_x = res_x 
        scene.render.resolution_y = res_y 
        scene.render.resolution_percentage = percent 
        scene.render.pixel_aspect_x = aspect_x 
        scene.render.pixel_aspect_y = aspect_y 
       
    return 

set_fa() 
set_frt_rp() 

�62



# save infile with standard settings 

outfile = "f_" + infile 
bpy.ops.wm.save_as_mainfile(filepath="/home/master/staging/" + outfile) 

�63



gpu_rp.sh 

#!/bin/bash 

# gpu_rp.sh - Runs Python script to set GPU render properties  

helpFunction() 
{ 
   echo "" 
   echo "Usage: $0 -i Input-file" 
   echo "\t-i Name of animation file including the file extension" 
   exit 1 # Exit script after printing help 
} 

while getopts "i:" opt 
do 
   case "$opt" in 
       i) infile="$OPTARG" ;;  
   esac 
done 

# Print helpFunction in case parameters are empty 
if [ -z "$infile" ] 
then 
   echo "Missing arguement or dash"; 
   helpFunction 
fi 

# Begin script in case all parameters are correct 
echo "Render job with..." 
echo "\tInput animation file: $infile" 
echo "Initiate from..." 
cd ~ 
pwd 
start_time=$(date +"%c") 
echo "Started at: $start_time" 

# Blender background mode command line 

exec blender -b ~/staging/$infile -P ~/render_bin/set_gpu_rp.py 

�64



set_gpu_rp.py 

################################################################ 
#  set_frt_rp.py  - set fast render time render properties 
#    opens .blend file 
#    sets standard render properties   
#    saves .blend file with settings 
# 
################################################################    

import bpy 

# get the name of this .blend file 

infile=bpy.path.basename(bpy.context.blend_data.filepath) 

# check if images are packed in 

# set global output properties for all scenes in infile 

def set_fa() : 

    for scene in bpy.data.scenes: 
        scene.render.use_overwrite = False 
        scene.render.use_placeholder = True 
         
    return 

# declare standard production render property values and 
# set global output properties for all scenes in infile 

def set_frt_rp() : 

    res_x = 1280 
    res_y = 720 
    percent = 90 
    aspect_x = 1 
    aspect_y = 1 

    for scene in bpy.data.scenes: 
        scene.render.resolution_x = res_x 
        scene.render.resolution_y = res_y 
        scene.render.resolution_percentage = percent 
        scene.render.pixel_aspect_x = aspect_x 
        scene.render.pixel_aspect_y = aspect_y 
       
    return 

set_fa() 
set_frt_rp() 

�65



# save infile with standard settings 

outfile = "f_" + infile 
bpy.ops.wm.save_as_mainfile(filepath="/home/master/staging/" + outfile) 

�66



cpu_rp.sh 

#!/bin/bash 

# cpu_rp.sh - Runs Python script to set CPU render properties  

helpFunction() 
{ 
   echo "" 
   echo "Usage: $0 -i Input-file" 
   echo "\t-i Name of animation file including the file extension" 
   exit 1 # Exit script after printing help 
} 

while getopts "i:" opt 
do 
   case "$opt" in 
       i) infile="$OPTARG" ;;  
   esac 
done 

# Print helpFunction in case parameters are empty 
if [ -z "$infile" ] 
then 
   echo "Missing arguement or dash"; 
   helpFunction 
fi 

# Begin script in case all parameters are correct 
echo "Render job with..." 
echo "\tInput animation file: $infile" 
echo "Initiate from..." 
cd ~ 
pwd 
start_time=$(date +"%c") 
echo "Started at: $start_time" 

# Blender background mode command line 

exec blender -b ~/staging/$infile -P ~/render_bin/set_cpu_rp.py 

�67



set_cpu_rp.py 

################################################################ 
#  set_ cpu_rp.py  - set cpu render properties 
#    sets device settings for a host with CPU cores   
#    writes out .blend files for cpu render 
################################################################    

import bpy 

# get the name of the input file .blend file 

infile=bpy.path.basename(bpy.context.blend_data.filepath) 

# set global output properties for all scenes in infile 

def set_fa() : 

    for scene in bpy.data.scenes: 
        scene.render.use_overwrite = False 
        scene.render.use_placeholder = True 
         
    return 
  
# declare render device tile size settings 
# set render device type to CPU 
# set tile size 
# set Threads mode as Auto-detect  

def set_cpu_rp() :  

    opt_cpu_tile_x = 32 
    opt_cpu_tile_y = 32 
  
    for scene in bpy.data.scenes: 
        scene.cycles.device = 'CPU' 
        scene.render.tile_x = opt_cpu_tile_x 
        scene.render.tile_y = opt_cpu_tile_y 
        scene.render.threads_mode = 'AUTO' 

    return 
     
set_fa() 
set_cpu_rp() 

# write file for cpu render 

outfile = "c_" + infile 
bpy.ops.wm.save_as_mainfile(filepath="/home/master/staging/" + outfile) 

�68



prod_ren.sh 

#!/bin/bash 

# prod_ren.sh - Initiates a production background render using users settings 

helpFunction() 
{ 
   echo "" 
   echo "Usage: $0 -i Input-file -o Output-file" 
   echo "\t-i Name of animation file including the file extension" 
   echo "\t-o Name of output image sequence with optional # spec" 
   exit 1 # Exit script after printing help 
} 

while getopts "i:o:" opt 
do 
   case "$opt" in 
       i) infile="$OPTARG" ;; 
       o) outfile="$OPTARG" ;;  
   esac 
done 

# Print helpFunction in case parameters are empty 
if [ -z "$infile" ] || [ -z "$outfile" ] 
then 
   echo "Missing arguement or dash"; 
   helpFunction 
fi 

# Begin script in case all parameters are correct 
echo "Render job with..." 
echo "\tInput animation file: $infile" 
echo "\tOutput image sequence: $outfile" 
echo "Initiate from..." 
cd ~ 
pwd 
start_time=$(date +"%c") 
echo "Started at: $start_time" 

# Blender background mode command line 

exec blender -b ~/prod_render/$infile \ 
             -o //prod_images/$outfile -F -x 1 \ 
             -P set_ren_fa.py \ 
             -a 

�69



test_ren.sh 

#!/bin/bash 

# test_ren.sh - Initiates a test background render using users settings 

helpFunction() 
{ 
   echo "" 
   echo "Usage: $0 -i Input-file -o Output-file" 
   echo "\t-i Name of animation file including the file extension" 
   echo "\t-o Name of output image sequence with optional # spec" 
   exit 1 # Exit script after printing help 
} 

while getopts "i:o:" opt 
do 
   case "$opt" in 
       i) infile="$OPTARG" ;; 
       o) outfile="$OPTARG" ;;  
   esac 
done 

# Print helpFunction in case parameters are empty 
if [ -z "$infile" ] || [ -z "$outfile" ] 
then 
   echo "Missing arguement or dash"; 
   helpFunction 
fi 

# Begin script in case all parameters are correct 
echo "Render job with..." 
echo "\tInput animation file: $infile" 
echo "\tOutput image sequence: $outfile" 
echo "Initiate from..." 
cd ~ 
pwd 
start_time=$(date +"%c") 
echo "Started at: $start_time" 

# Blender background mode command line 

exec blender -b ~/test_render/$infile \ 
             -o //test_images/$outfile -F PNG -x 1 \ 
             -P set_ren_fa.py \ 
             -a 

�70



set_ren_fa.py 

################################################################ 
#  set_ren_fa.py  - set sets critical Overwrite and Placeholder 
#  render properties on render host 
#    opens .blend file 
#    sets Overwrite to False and Placeholder to True render properties   
################################################################    

import bpy 

# set global output properties for all scenes in infile 

def set_fa() : 

    for scene in bpy.data.scenes: 
        scene.render.use_overwrite = False 
        scene.render.use_placeholder = True 
         
    return 

set_fa() 

�71



cpu_prod_ren.sh 

#!/bin/bash 

# cpu_prod_ren.sh - Initiates a production background render using cpu cores 

helpFunction() 
{ 
   echo "" 
   echo "Usage: $0 -i Input-file -o Output-file" 
   echo "\t-i Name of animation file including the file extension" 
   echo "\t-o Name of output image sequence with optional # spec" 
   exit 1 # Exit script after printing help 
} 

while getopts "i:o:" opt 
do 
   case "$opt" in 
       i) infile="$OPTARG" ;; 
       o) outfile="$OPTARG" ;;  
   esac 
done 

# Print helpFunction in case parameters are empty 
if [ -z "$infile" ] || [ -z "$outfile" ] 
then 
   echo "Missing arguement or dash"; 
   helpFunction 
fi 

# Begin script in case all parameters are correct 
echo "Render job with..." 
echo "\tInput animation file: $infile" 
echo "\tOutput image sequence: $outfile" 
echo "Initiate from..." 
cd ~ 
pwd 
start_time=$(date +"%c") 
echo "Started at: $start_time" 

# Blender background mode command line 

exec blender -b ~/prod_render/$infile \ 
             -o //prod_images/$outfile -F PNG -x 1 \ 
             -P alloc_cpu_rt.py \ 
             -a 

�72



cpu_test_ren.sh 

#!/bin/bash 

# cpu_test_ren.sh - Initiates a test background render using cpu cores 

helpFunction() 
{ 
   echo "" 
   echo "Usage: $0 -i Input-file -o Output-file" 
   echo "\t-i Name of animation file including the file extension" 
   echo "\t-o Name of output image sequence with optional # spec" 
   exit 1 # Exit script after printing help 
} 

while getopts "i:o:" opt 
do 
   case "$opt" in 
       i) infile="$OPTARG" ;; 
       o) outfile="$OPTARG" ;;  
   esac 
done 

# Print helpFunction in case parameters are empty 
if [ -z "$infile" ] || [ -z "$outfile" ] 
then 
   echo "Missing arguement or dash"; 
   helpFunction 
fi 

# Begin script in case all parameters are correct 
echo "Render job with..." 
echo "\tInput animation file: $infile" 
echo "\tOutput image sequence: $outfile" 
echo "Initiate from..." 
cd ~ 
pwd 
start_time=$(date +"%c") 
echo "Started at: $start_time" 

# Blender background mode command line 

exec blender -b ~/test_render/$infile \ 
             -o //test_images/$outfile -F PNG -x 1 \ 
             -P alloc_cpu_rt.py \ 
             -a 

�73



alloc_cpu_rt.py 

######################################################################### 
#  alloc_cpu_rt.py  - allocate CPU render threads  
# set max cpu core usage based on leaving 1 thread to kernel use 
# cpu_count() returns logical cores not physical cores i.e. total threads 
##########################################################################    

import bpy 
from multiprocessing import cpu_count 

def set_fa() : 

    for scene in bpy.data.scenes: 
        scene.render.use_overwrite = False 
        scene.render.use_placeholder = True 
         
    return 

def alloc_cpu_rt() : 

    available_threads = cpu_count() 
    cpu_render_threads = max(1, (available_threads - 1)) 

    for scene in bpy.data.scenes: 
        scene.render.threads_mode = 'FIXED' 
        scene.render.threads = cpu_render_threads 

    return 
     
set_fa() 
alloc_cpu_rt() 
  

�74



Set Permissions 

On all hosts, set all schell scripts in render_bin to executable  

1 - $ chmod +x <scriptname> 

�75



Part 4 - Operations 

Pro forma 

JOB TICKET

A simple job ticket is a useful means of passing render information from animator to render farm and 
provides a reference for analysis of results.

�76



UTILISATION SHEET

A simple spreadsheet is a useful means of planning renders and analysing render farm utilisation and 
performance.

   

   

�77



Operations  Readiness Check 

Automation Scripts 

Current automation scripts install as per instalation schedule. 

Job Ticket 

Blank Job Ticket available in drop_box share directory 

Scheduling  

Blank utilisation sheet available in master scheduling directory  

Current utilisation sheet available in master scheduling directory  

Archiving 

Any files marked for archive to be  transferred to Filserver-1 

Share Directories 

All share directories vacant and ready. 

�78



Render Farm Ops Guides 

HOST BOOT SEQUENCE

Boot  master-1 and wait until fully booted (share directories are active) 

Boot required render hosts in numerical order 

Job Submission 

From workstation 

1-  Access job ticket proforma in drop_box and make a copy 

2 - Rename to the next job number, enter information 

3 - Save to to drop_box along with animation file.  

Job Scheduling 

1 - Inspect drop_box for new content 

2 - Move animation file and job ticket to staging directory 

3 - Inspect current utilisation sheet and calculate Expected Render Time  

4 - Schedule job on Utilisation sheet 

Preprocessing 

From master-1 master login

1 - $  cd render_bin

If Original settings (O) 
    
    2 - $  sh fa.sh -i staging/<infile> 

Else  If High Image Quality (HIQ) 

        3 - $  sh hiq_rp.sh -i staging/<infile> 

        Else If Fastest Render Time (FRT) 

           4 - $  sh frt_rp.sh -i <infile>

�79



If GPU render 

    5 - $  sh gpu_rp.sh -i <infile>  

If CPU render 
 
    6 - $  sh cpu_rp.sh -i <infile>

If Production or Rework type 

    7 - Move animation file(s) from staging to prod_render  directory 

Else 

    8 - Move animation file(s) from staging to test_render directory  

9 - Move job ticket to job_ticketss directory 

10 - Identify render model 

Initiate Model 1 Render  

From master-1 master login 

1 Determine if type is Production, Rework or Test 

For each render host 

    2 $ ssh tracer@<host IPaddress>  

    3 $  cd render_bin 

    If Production or Rework type 

        4 $  sh prod_ren.sh -i <infile> -o  <image_sequence> 

        e.g. $ sh prod_ren.sh -i myfile.blend -o myfram#### 

    Else 

        5 $  sh test_ren.sh -i <infile> -o  <image_sequence> 

6  On completion move all frames to compositing directory 

$ mv <type>_images/<seqname>*.png compositing  

�80



Initiate Model 2 Render 

From master-1 master login 

For each render host 

    1 $ ssh tracer@<host IPaddress>  

    2 $  cd render_bin 

    If GPU render 

        If Production or Rework type 

           3 $  sh prod_ren.sh -i <infile> -o  <image_sequence> 

            e.g. $ sh prod_ren.sh -i myfile.blend -o myfram#### 

        Else   

            4 $  sh test_ren.sh -i <infile> -o  <image_sequence> 

    If CPU render 

        If Production or Rework type 
     
           5 $  sh cpu_prod_ren.sh -i <infile> -o  <image_sequence> 

     e.g. $ sh cpu_prod_ren.sh -i myfile.blend -o myfram### 

        Else 

           6 $  sh cpu_test_ren.sh -i <infile> -o  <image_sequence 

7  On completion move all frames to compositing directory 

$ mv <type>_images/<seqname>*.png compositing 

8  Render image sequence 

�81



COMPOSITING

Compositing may be performed on the master host. 

VIDEO EDITING AND AUDIO EDITING

Video editing could be performed on the master host or workstation.  Audio editing will require audio 
applications,high quality audio output and closed earphones that are more suited to a workstation. 

ARCHIVING

FreeNAS uses the same Linux distro and  has detailed installation instructions.  An ex-corporate/government 
PC with additional storage is a good option as the fileserver host.     

1 - Move animation files from composting directory to for_archive directory 

2 - Perform archival process 

3 - Ensure any files required for rework or future reference can easily be recalled bask to the staging directory.  
A common mistake is to design archival and backup procedues without allowing for quick and easy recall.   

ROUTINE MAINTENANCE 

Periodic actions are needed to maintain the hosts at top performance.  Maintenance includes: 
   
Backing up fie storage 

Cleaning up temporary files 

Checking storage devices are not full or nearing full 

Clearing out log files 

It is important to maintain all render hosts to the same softwere installation and configuration.  Ideally they 
should not be used for storage or any are application. 

CONCURRENT PROCESSES  

Using SSH is a simple means to access all render hosts from a single command line but therefore a single 
shell.  A VNC session sing te vlient on the master host can be initiated for any render hosts to access its 
desktop GUI.  This provides a means to open two separate command lines and initate a render process from 
each, resulting in concurrent processes.  Although two concurrent CPU renders are possible the farm is 
designed to support concurrent CPU and GPU processes.  The CPU process allocates for the operating 
system and a GPU process. 

PROCESS MONITORING 

The VNC master host VNC client can be used to run monitoring tools   

�82



Render Task Optimisation     

PROCESS DISCOVERY   

An ongoing process to optimise host performance begins with discovering all the services and 
applications, in particular those that are started at boot time and remain active. 

Listing all systemd service units: 

$ systemctl list-units --all --type=service --no-pager 

Listing all units of all types and disposition: 

$ systemctl list-unit-files --no-pager 

Listing all active units 

$ systemctl list-units --all --type=service --no-pager | grep running 

List enabled or disabled services 

$ systemctl list-unit-files | grep enabled 

$ systemctl list-unit-files | grep disabled 

In addition to systemd, shell scripts and programs can be initiated from logon profiles, CRON and the 
startup program on the Lightdm desktop.  CRON is a job scheduler often used to run routine 
maintance automation.  If not used it is one of the processes that can (should) be halted.  The 
programs started by the desktop start-up program are accessible from Control Centre - Startup 
Applications.  The program can be used to autostart shell scripts and applications, some of which are 
not needed by the render process.  There are hidden startup applications that are not immediately 
discovered through the console.  To un-hide them: 

$   sudo sed –i ‘s/NoDisplay=true/NoDisplay=false/g’ /etc/xdg/autostart/*.desktop 

OPTIMISATION 

Increased performance is possible by halting services that are not needed however great care is 
needed as it is a task for experts.  Once all services and startup applications are discovered and 
potential candidates are identified, it would be wise to consult a Linux or Ubuntu forum.  Any actions 
to halt services should be rested on a proxy installation that can easily be rebuilt, i.e. an old laptop.  

�83


